Abstract
In sight of the luminosity increase of the High Luminosity-LHC (HL-LHC), most experiments at the CERN Large Hadron Collider (LHC) are planning upgrades for their innermost layers in the next 5–10 years. These upgrades will require more radiation tolerant technologies than exist today. Usage of Chemical Vapor Deposition (CVD) diamond as detector material is one of the potentially interesting technologies for the upgrade. CVD diamond has been used extensively in the beam condition monitors of BaBar, Belle, CDF and all LHC experiments. Measurements of the radiation tolerance of the highest quality polycrystalline CVD material for a range of proton energies, pions and neutrons obtained with this material are presented. In addition, new results on the evolution of various semiconductor parameters as a function of the dose rate are described.
Original language | English (US) |
---|---|
Pages (from-to) | 241-244 |
Number of pages | 4 |
Journal | Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
Volume | 924 |
DOIs | |
State | Published - Apr 21 2019 |
Keywords
- Diamond detectors
- Radiation hard detectors
- Solid state detectors
ASJC Scopus subject areas
- Nuclear and High Energy Physics
- Instrumentation
Access to Document
Fingerprint Dive into the research topics of 'Results on radiation tolerance of diamond detectors'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Results on radiation tolerance of diamond detectors. / Venturi, N.; Alexopoulos, A.; Artuso, M.; Bachmair, F.; Bäni, L.; Bartosik, M.; Beacham, J.; Beck, H.; Bellini, V.; Belyaev, V.; Bentele, B.; Bergonzo, P.; Bes, A.; Brom, J. M.; Bruzzi, M.; Chiodini, G.; Chren, D.; Cindro, V.; Claus, G.; Collot, J.; Cumalat, J.; Dabrowski, A.; D'Alessandro, R.; Dauvergne, D.; de Boer, W.; Dorfer, C.; Dunser, M.; Eremin, V.; Forcolin, G.; Forneris, J.; Gallin-Martel, L.; Gallin-Martel, M. L.; Gan, K. K.; Gastal, M.; Giroletti, C.; Goffe, M.; Goldstein, J.; Golubev, A.; Gorišek, A.; Grigoriev, E.; Grosse-Knetter, J.; Grummer, A.; Gui, B.; Guthoff, M.; Haughton, I.; Hiti, B.; Hits, D.; Hoeferkamp, M.; Hofmann, T.; Hosslet, J.; Hostachy, J. Y.; Hügging, F.; Hutton, C.; Janssen, J.; Kagan, H.; Kanxheri, K.; Kasieczka, G.; Kass, R.; Kassel, F.; Kis, M.; Kramberger, G.; Kuleshov, S.; Lacoste, A.; Lagomarsino, S.; Lo Giudice, A.; Lukosi, E.; Maazouzi, C.; Mandic, I.; Mathieu, C.; Menichelli, M.; Mikuž, M.; Morozzi, A.; Moss, J.; Mountain, R.; Murphy, S.; Muškinja, M.; Oh, A.; Olivero, P.; Passeri, D.; Pernegger, H.; Perrino, R.; Picollo, F.; Pomorski, M.; Potenza, R.; Quadt, A.; Re, A.; Reichmann, M.; Riley, G.; Roe, S.; Sanz, D.; Scaringella, M.; Schaefer, D.; Schmidt, C. J.; Smith, D. S.; Schnetzer, S.; Sciortino, S.; Scorzoni, A.; Seidel, S.; Servoli, L.; Sopko, B.; Sopko, V.; Spagnolo, S.; Spanier, S.; Stenson, K.; Stone, R.; Sutera, C.; Taylor, A.; Tannenwald, B.; Traeger, M.; Tromson, D.; Trischuk, W.; Tuve, C.; Velthuis, J.; Vittone, E.; Wagner, S.; Wallny, R.; Wang, J. C.; Weingarten, J.; Weiss, C.; Wengler, T.; Wermes, N.; Yamouni, M.; Zavrtanik, M.
In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 924, 21.04.2019, p. 241-244.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Results on radiation tolerance of diamond detectors
AU - Venturi, N.
AU - Alexopoulos, A.
AU - Artuso, M.
AU - Bachmair, F.
AU - Bäni, L.
AU - Bartosik, M.
AU - Beacham, J.
AU - Beck, H.
AU - Bellini, V.
AU - Belyaev, V.
AU - Bentele, B.
AU - Bergonzo, P.
AU - Bes, A.
AU - Brom, J. M.
AU - Bruzzi, M.
AU - Chiodini, G.
AU - Chren, D.
AU - Cindro, V.
AU - Claus, G.
AU - Collot, J.
AU - Cumalat, J.
AU - Dabrowski, A.
AU - D'Alessandro, R.
AU - Dauvergne, D.
AU - de Boer, W.
AU - Dorfer, C.
AU - Dunser, M.
AU - Eremin, V.
AU - Forcolin, G.
AU - Forneris, J.
AU - Gallin-Martel, L.
AU - Gallin-Martel, M. L.
AU - Gan, K. K.
AU - Gastal, M.
AU - Giroletti, C.
AU - Goffe, M.
AU - Goldstein, J.
AU - Golubev, A.
AU - Gorišek, A.
AU - Grigoriev, E.
AU - Grosse-Knetter, J.
AU - Grummer, A.
AU - Gui, B.
AU - Guthoff, M.
AU - Haughton, I.
AU - Hiti, B.
AU - Hits, D.
AU - Hoeferkamp, M.
AU - Hofmann, T.
AU - Hosslet, J.
AU - Hostachy, J. Y.
AU - Hügging, F.
AU - Hutton, C.
AU - Janssen, J.
AU - Kagan, H.
AU - Kanxheri, K.
AU - Kasieczka, G.
AU - Kass, R.
AU - Kassel, F.
AU - Kis, M.
AU - Kramberger, G.
AU - Kuleshov, S.
AU - Lacoste, A.
AU - Lagomarsino, S.
AU - Lo Giudice, A.
AU - Lukosi, E.
AU - Maazouzi, C.
AU - Mandic, I.
AU - Mathieu, C.
AU - Menichelli, M.
AU - Mikuž, M.
AU - Morozzi, A.
AU - Moss, J.
AU - Mountain, R.
AU - Murphy, S.
AU - Muškinja, M.
AU - Oh, A.
AU - Olivero, P.
AU - Passeri, D.
AU - Pernegger, H.
AU - Perrino, R.
AU - Picollo, F.
AU - Pomorski, M.
AU - Potenza, R.
AU - Quadt, A.
AU - Re, A.
AU - Reichmann, M.
AU - Riley, G.
AU - Roe, S.
AU - Sanz, D.
AU - Scaringella, M.
AU - Schaefer, D.
AU - Schmidt, C. J.
AU - Smith, D. S.
AU - Schnetzer, S.
AU - Sciortino, S.
AU - Scorzoni, A.
AU - Seidel, S.
AU - Servoli, L.
AU - Sopko, B.
AU - Sopko, V.
AU - Spagnolo, S.
AU - Spanier, S.
AU - Stenson, K.
AU - Stone, R.
AU - Sutera, C.
AU - Taylor, A.
AU - Tannenwald, B.
AU - Traeger, M.
AU - Tromson, D.
AU - Trischuk, W.
AU - Tuve, C.
AU - Velthuis, J.
AU - Vittone, E.
AU - Wagner, S.
AU - Wallny, R.
AU - Wang, J. C.
AU - Weingarten, J.
AU - Weiss, C.
AU - Wengler, T.
AU - Wermes, N.
AU - Yamouni, M.
AU - Zavrtanik, M.
N1 - Funding Information: The RD42 Collaboration gratefully acknowledges the staff at CERN for test beam time and their help in setting up beam conditions. We would especially like to thank Henric Wilkens, the test beam coordinator, for his assistance in making our tests a success. We would also like to thank the beam line staff at the Los Alamos Neutron Science Centre (LANSCE). We would especially like to thank Leo Bitteker of LANSCE for his assistance for carrying out the diamond detector irradiations in the blue room and dosimetry. We also extend our gratitude to Prof. Lin Li and David Whitehead of the University of Manchester Laser Processing Center for assisting in the production of the 3D diamond device. The research leading to these results received funding from the European Union Horizon 2020 research and innovation program under grant agreement No. 654 168. This work was also partially supported by the Swiss National Science Foundation grant #20L20_54216, ETH grant 51 15-1 (Switzerland), Royal Society Grant UF120106 (United Kingdom) and U.S. Department of Energy grant DE-SC0010061. Funding Information: The RD42 Collaboration gratefully acknowledges the staff at CERN for test beam time and their help in setting up beam conditions. We would especially like to thank Henric Wilkens, the test beam coordinator, for his assistance in making our tests a success. We would also like to thank the beam line staff at the Los Alamos Neutron Science Centre (LANSCE). We would especially like to thank Leo Bitteker of LANSCE for his assistance for carrying out the diamond detector irradiations in the blue room and dosimetry. We also extend our gratitude to Prof. Lin Li and David Whitehead of the University of Manchester Laser Processing Center for assisting in the production of the 3D diamond device. The research leading to these results received funding from the European Union Horizon 2020 research and innovation program under grant agreement No. 654 168 . This work was also partially supported by the Swiss National Science Foundation grant FL20154216 , ETH grant 51 15-1 (Switzerland), Royal Society Grant UF120106 (United Kingdom) and U.S. Department of Energy grant DE-SC0010061 .
PY - 2019/4/21
Y1 - 2019/4/21
N2 - In sight of the luminosity increase of the High Luminosity-LHC (HL-LHC), most experiments at the CERN Large Hadron Collider (LHC) are planning upgrades for their innermost layers in the next 5–10 years. These upgrades will require more radiation tolerant technologies than exist today. Usage of Chemical Vapor Deposition (CVD) diamond as detector material is one of the potentially interesting technologies for the upgrade. CVD diamond has been used extensively in the beam condition monitors of BaBar, Belle, CDF and all LHC experiments. Measurements of the radiation tolerance of the highest quality polycrystalline CVD material for a range of proton energies, pions and neutrons obtained with this material are presented. In addition, new results on the evolution of various semiconductor parameters as a function of the dose rate are described.
AB - In sight of the luminosity increase of the High Luminosity-LHC (HL-LHC), most experiments at the CERN Large Hadron Collider (LHC) are planning upgrades for their innermost layers in the next 5–10 years. These upgrades will require more radiation tolerant technologies than exist today. Usage of Chemical Vapor Deposition (CVD) diamond as detector material is one of the potentially interesting technologies for the upgrade. CVD diamond has been used extensively in the beam condition monitors of BaBar, Belle, CDF and all LHC experiments. Measurements of the radiation tolerance of the highest quality polycrystalline CVD material for a range of proton energies, pions and neutrons obtained with this material are presented. In addition, new results on the evolution of various semiconductor parameters as a function of the dose rate are described.
KW - Diamond detectors
KW - Radiation hard detectors
KW - Solid state detectors
UR - http://www.scopus.com/inward/record.url?scp=85052747455&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052747455&partnerID=8YFLogxK
U2 - 10.1016/j.nima.2018.08.038
DO - 10.1016/j.nima.2018.08.038
M3 - Article
AN - SCOPUS:85052747455
VL - 924
SP - 241
EP - 244
JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
SN - 0168-9002
ER -