Abstract
Novel fire regimes are expected in many boreal regions, and it is unclear how biogeochemical cycles will respond. We leverage fire and vegetation records from a highly flammable ecoregion in Alaska and present new lake-sediment analyses to examine biogeochemical responses to fire over the past 5300 years. No significant difference exists in δ13C, %C, %N, C: N, or magnetic susceptibility between pre-fire, post-fire, and fire samples. However, δ15N is related to the timing relative to fire (χ2 = 19.73, p < 0.0001), with higher values for fire-decade samples (3.2 ± 0.3) than pre-fire (2.4 ± 0.2) and post-fire (2.2 ± 0.1) samples. Sediment δ15N increased gradually from 1.8 ± 0.6 to 3.2 ± 0.2 over the late Holocene, probably as a result of terrestrial-ecosystem development. Elevated δ15N in fire decades likely reflects enhanced terrestrial nitrification and/or deeper permafrost thaw depths immediately following fire. Similar δ15N values before and after fire decades suggest that N cycling in this lowland-boreal watershed was resilient to fire disturbance. However, this resilience may diminish as boreal ecosystems approach climate-driven thresholds of vegetation structure, permafrost thaw and fire.
Original language | English (US) |
---|---|
Article number | 20190390 |
Journal | Biology letters |
Volume | 15 |
Issue number | 8 |
DOIs | |
State | Published - Aug 1 2019 |
Keywords
- Boreal fires
- C: N
- Carbon
- Ecological resilience
- Nitrogen
- δC
- δN
ASJC Scopus subject areas
- Agricultural and Biological Sciences (miscellaneous)
- General Agricultural and Biological Sciences