TY - GEN
T1 - Representing Networks with 3D Shapes
AU - Jin, Shengmin
AU - Zafarani, Reza
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/12/27
Y1 - 2018/12/27
N2 - There has been a surge of interest in machine learning in graphs, as graphs and networks are ubiquitous across the globe and within science and engineering: road networks, power grids, protein-protein interaction networks, scientific collaboration networks, social networks, to name a few. Recent machine learning research has focused on efficient and effective ways to represent graph structure. Existing graph representation methods such as network embedding techniques learn to map a node (or a graph) to a vector in a low-dimensional vector space. However, the mapped values are often difficult to interpret, lacking information on the structure of the network or its subgraphs. Instead of using a low-dimensional vector to represent a graph, we propose to represent a network with a 3-dimensional shape: the network shape. We introduce the first network shape, a Kronecker hull, which represents a network as a 3D convex polyhedron using stochastic Kronecker graphs. We present a linear time algorithm to build Kronecker hulls. Network shapes provide a compact representation of networks that is easy to visualize and interpret. They captures various properties of not only the network, but also its subgraphs. For instance, they can provide the distribution of subgraphs within a network, e.g., what proportion of subgraphs are structurally similar to the whole network? Using experiments on real-world networks, we show how network shapes can be used in various applications, from computing similarity between two graphs (using the overlap between network shapes of two networks) to graph compression, where a graph with millions of nodes can be represented with a convex hull with less than 40 boundary points.
AB - There has been a surge of interest in machine learning in graphs, as graphs and networks are ubiquitous across the globe and within science and engineering: road networks, power grids, protein-protein interaction networks, scientific collaboration networks, social networks, to name a few. Recent machine learning research has focused on efficient and effective ways to represent graph structure. Existing graph representation methods such as network embedding techniques learn to map a node (or a graph) to a vector in a low-dimensional vector space. However, the mapped values are often difficult to interpret, lacking information on the structure of the network or its subgraphs. Instead of using a low-dimensional vector to represent a graph, we propose to represent a network with a 3-dimensional shape: the network shape. We introduce the first network shape, a Kronecker hull, which represents a network as a 3D convex polyhedron using stochastic Kronecker graphs. We present a linear time algorithm to build Kronecker hulls. Network shapes provide a compact representation of networks that is easy to visualize and interpret. They captures various properties of not only the network, but also its subgraphs. For instance, they can provide the distribution of subgraphs within a network, e.g., what proportion of subgraphs are structurally similar to the whole network? Using experiments on real-world networks, we show how network shapes can be used in various applications, from computing similarity between two graphs (using the overlap between network shapes of two networks) to graph compression, where a graph with millions of nodes can be represented with a convex hull with less than 40 boundary points.
KW - Graph representation
KW - Kronecker hulls
KW - Network convex hull
KW - Network shapes
UR - http://www.scopus.com/inward/record.url?scp=85061347279&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85061347279&partnerID=8YFLogxK
U2 - 10.1109/ICDM.2018.00033
DO - 10.1109/ICDM.2018.00033
M3 - Conference contribution
AN - SCOPUS:85061347279
T3 - Proceedings - IEEE International Conference on Data Mining, ICDM
SP - 177
EP - 186
BT - 2018 IEEE International Conference on Data Mining, ICDM 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th IEEE International Conference on Data Mining, ICDM 2018
Y2 - 17 November 2018 through 20 November 2018
ER -