TY - GEN
T1 - Reconfigurable thermoelectric generators for vehicle radiators energy harvesting
AU - Baek, Donkyu
AU - Ding, Caiwen
AU - Lin, Sheng
AU - Shin, Donghwa
AU - Kim, Jaemin
AU - Lin, Xue
AU - Wang, Yanzhi
AU - Chang, Naehyuck
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/8/11
Y1 - 2017/8/11
N2 - Conventional internal combustion engine vehicles (ICEV) generally have less than a 30% of fuel efficiency, and the most wasted energy is dissipated in the form of heat energy. The heat energy maintains the engine temperature for efficient combustion as a good aspect, but the amount of heat generation is excessive and eventually breaks the engine components unless advanced cooling system technologies are supported such as high-capacity radiators, elaborated water jackets, high-flow rate coolant pumps, etc. The excessive heat dissipation plays a key role on a poor fuel economy, but reclamation of the heat energy has not been a main focus of vehicle design. This work is first to propose a cross-layer, system-level solution to enhance thermoelectric generator (TEG) array efficiency introducing online reconfiguration of TEG modules. The proposed method is useful to any sort of TEG array to reclaim wasted heat energy because cooling and exhaust systems generally have different inlet and outlet temperatures. In this paper, we deploy the proposed method to vehicle radiator heat energy harvesting, which does not affect the vehicle performance while exhaust heat energy harvesting may disturb the combustion and emission control integrity. We introduce a novel TEG reconfiguration and maximize the TEG array output in spite of dynamic change of the coolant flow rate and temperature, which results in a huge variation in the coolant temperature distribution of inside the radiator. The proposed method enables all the TEG modules to run at or close to their maximum power points (MPP) under dynamically changing vehicle operating conditions. Experimental results show up to a 34% enhancement compared with a fixed array structure, which is a common practice.
AB - Conventional internal combustion engine vehicles (ICEV) generally have less than a 30% of fuel efficiency, and the most wasted energy is dissipated in the form of heat energy. The heat energy maintains the engine temperature for efficient combustion as a good aspect, but the amount of heat generation is excessive and eventually breaks the engine components unless advanced cooling system technologies are supported such as high-capacity radiators, elaborated water jackets, high-flow rate coolant pumps, etc. The excessive heat dissipation plays a key role on a poor fuel economy, but reclamation of the heat energy has not been a main focus of vehicle design. This work is first to propose a cross-layer, system-level solution to enhance thermoelectric generator (TEG) array efficiency introducing online reconfiguration of TEG modules. The proposed method is useful to any sort of TEG array to reclaim wasted heat energy because cooling and exhaust systems generally have different inlet and outlet temperatures. In this paper, we deploy the proposed method to vehicle radiator heat energy harvesting, which does not affect the vehicle performance while exhaust heat energy harvesting may disturb the combustion and emission control integrity. We introduce a novel TEG reconfiguration and maximize the TEG array output in spite of dynamic change of the coolant flow rate and temperature, which results in a huge variation in the coolant temperature distribution of inside the radiator. The proposed method enables all the TEG modules to run at or close to their maximum power points (MPP) under dynamically changing vehicle operating conditions. Experimental results show up to a 34% enhancement compared with a fixed array structure, which is a common practice.
UR - http://www.scopus.com/inward/record.url?scp=85028605749&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028605749&partnerID=8YFLogxK
U2 - 10.1109/ISLPED.2017.8009166
DO - 10.1109/ISLPED.2017.8009166
M3 - Conference contribution
AN - SCOPUS:85028605749
T3 - Proceedings of the International Symposium on Low Power Electronics and Design
BT - ISLPED 2017 - IEEE/ACM International Symposium on Low Power Electronics and Design
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 22nd IEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2017
Y2 - 24 July 2017 through 26 July 2017
ER -