Rapid generation of parametric aircraft structural models

John Joe, Viraj Gandhi, John F. Dannenhoffer, Hamid Dalir

Research output: Chapter in Book/Entry/PoemConference contribution

5 Scopus citations

Abstract

Within the aerospace design, analysis and optimization community, there is an increasing demand for automatic generation of parametric feature tree (build recipe) attributed multidisciplinary models. Currently, this is mainly done by creating separate models for different disciplines such as mid-surface model for aeroelasticity, outer-mold line for aerodynamics and CFD, and built-up element model for structural analysis. Since all of these models are built independently, any changes in design parameters require updates on all the models which is inefficient, time-consuming and prone to deficiencies. Here a browser-based system, called the Engineering Sketch Pad (ESP), is used. It provides the user with the ability to interact with a configuration by building and/or modifying the design parameters and feature tree that define the configuration. ESP is based an open-source constructive solid modeler, named OpenCSM, which is built upon the OpenCASCADE geometry kernel and the EGADS geometry generation system. The use of OpenCSM as part of the AFRL’s CAPS project on Computational Aircraft Prototype Syntheses for automatic commercial and fighter jet models is demonstrated. The rapid generation of parametric aircraft structural models proposed and developed in this work will benefit the aerospace industry with coming up with efficient, fast and robust multidisciplinary design standardization of aircraft structures.

Original languageEnglish (US)
Title of host publicationAIAA Scitech 2019 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624105784
DOIs
StatePublished - Jan 1 2019
EventAIAA Scitech Forum, 2019 - San Diego, United States
Duration: Jan 7 2019Jan 11 2019

Publication series

NameAIAA Scitech 2019 Forum

Conference

ConferenceAIAA Scitech Forum, 2019
Country/TerritoryUnited States
CitySan Diego
Period1/7/191/11/19

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Rapid generation of parametric aircraft structural models'. Together they form a unique fingerprint.

Cite this