Radio-transparent dipole antenna based on a metasurface cloak

Jason Soric, Younes Ra’di, Diego Farfan, Andrea Alù

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Antenna technology is at the basis of ubiquitous wireless communication systems and sensors. Radiation is typically sustained by conduction currents flowing around resonant metallic objects that are optimized to enhance efficiency and bandwidth. However, resonant conductors are prone to large scattering of impinging waves, leading to challenges in crowded antenna environments due to blockage and distortion. Metasurface cloaks have been explored in the quest of addressing this challenge by reducing antenna scattering. However, metasurface-based designs have so far shown limited performance in terms of bandwidth, footprint and overall scattering reduction. Here we introduce a different route towards radio-transparent antennas, in which the cloak itself acts as the radiating element, drastically reducing the overall footprint while enhancing scattering suppression and bandwidth, without sacrificing other relevant radiation metrics compared to conventional antennas. This technique opens opportunities for cloaking technology, with promising features for crowded wireless communication platforms and noninvasive sensing.

Original languageEnglish (US)
Article number1114
JournalNature Communications
Issue number1
StatePublished - Dec 2022
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Radio-transparent dipole antenna based on a metasurface cloak'. Together they form a unique fingerprint.

Cite this