Abstract
During interphase, Rab11-GTPase-containing endosomes recycle endocytic cargo. However, little is known about Rab11 endosomes in mitosis. Here, we show that Rab11 localizes to the mitotic spindle and regulates dynein-dependent endosome localization at poles. We found that mitotic recycling endosomes bind γ-TuRC components and associate with tubulin invitro. Rab11 depletion or dominant-negative Rab11 expression disrupts astral microtubules, delays mitosis, and redistributes spindle pole proteins. Reciprocally, constitutively active Rab11 increases astral microtubules, restores γ-tubulin spindle pole localization, and generates robust spindles. This suggests a role for Rab11 activity in spindle pole maturation during mitosis. Rab11 depletion causes misorientation of the mitotic spindle and the plane of cell division. These findings suggest a molecular mechanism for the organization of astral microtubules and the mitotic spindle through Rab11-dependent control of spindle pole assembly and function. We propose that Rab11 and its associated endosomes cocontribute to these processes through retrograde transport to poles by dynein.
Original language | English (US) |
---|---|
Pages (from-to) | 497-507 |
Number of pages | 11 |
Journal | Developmental Cell |
Volume | 28 |
Issue number | 5 |
DOIs | |
State | Published - Mar 10 2014 |
Externally published | Yes |
ASJC Scopus subject areas
- Molecular Biology
- Biochemistry, Genetics and Molecular Biology(all)
- Developmental Biology
- Cell Biology