Abstract
We discuss the theory of non-critical strings with extrinsic curvature embedded in a target space dimension d greater than one. We emphasize the analogy between 2 d gravity coupled to matter and non self-avoiding liquid-like membranes with bending rigidity. We first outline the exact solution for strings in dimensions d<1 via the double scaling limit of matrix models and then discuss the difficulties of an extension to d>1. Evidence from recent and ongoing numerical simulations of dynamically triangulated random surfaces indicate that there is a non-trivial crossover from a crumpled to an extended surface as the bending rigidity is increased. If the cross-over is a true second order phase transition corresponding to a critical point there is the exciting possibility of obtaining a well defined continuum string theory for d>1.
Original language | English (US) |
---|---|
Pages (from-to) | 1209-1221 |
Number of pages | 13 |
Journal | General Relativity and Gravitation |
Volume | 24 |
Issue number | 12 |
DOIs | |
State | Published - Dec 1992 |
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)