Quantitative footprinting analysis using a DNA-cleaving metalloporphyrin complex

James C. Dabrowiak, Brian Ward, Jerry Goodisman

Research output: Contribution to journalArticlepeer-review

55 Scopus citations

Abstract

The results of quantitative footprinting studies involving the antiviral agent netropsin and a DNA-cleaving cationic metalloporphyrin complex are presented. An analysis of the footprinting autoradiographic spot intensities using a model previously applied to footprinting studies involving the enzyme DNase I [Ward, B., Rehfuss, R., Goodisman, J., & Dabrowiak, J. C. (1988) Biochemistry 27, 1198–1205] led to very low values for netropsin binding constants on a restriction fragment from pBR-322 DNA. In this work, we show that, because the porphyrin binds with high specificity to DNA, it does not report site loading information in the same manner as does DNase I. We elucidate a model involving binding equilibria for individual sites and include competitive binding of drug and porphyrin for the same site. The free porphyrin and free drug concentrations are determined by binding equilibria with the carrier (calf thymus DNA) which is present in excess and acts as a buffer for both. Given free porphyrin and free netropsin concentrations for each total drug concentration in a series of footprinting experiments, one can calculate autoradiographic spot intensities in terms of the binding constants of netropsin to the various sites on the 139 base pair restriction fragment. The best values of these binding constants are determined by minimizing the sum of the squared differences between calculated and experimental footprinting autoradiographic spot intensities. Although the determined netropsin binding constants are insensitive to the value assumed for the porphyrin binding constant toward its highest affinity sites, the best mean-square deviation between observed and calculated values, D, depends on the choice of (average) drug binding constant to carrier DNA, Kd. Since D as a function of Kd passes through a clear minimum, we were able to determine this parameter as well. The study demonstrates that the specificity of probe binding to DNA is an important factor influencing the reporting of site occupancy by drug in the quantitative footprinting experiment.

Original languageEnglish (US)
Pages (from-to)3314-3322
Number of pages9
JournalBiochemistry
Volume28
Issue number8
DOIs
StatePublished - Apr 1989

ASJC Scopus subject areas

  • Biochemistry

Fingerprint

Dive into the research topics of 'Quantitative footprinting analysis using a DNA-cleaving metalloporphyrin complex'. Together they form a unique fingerprint.

Cite this