Abstract
In this correspondence, we address the problem of fusing data for object tracking for video surveillance. The fusion process is dynamically regulated to take into account the performance of the sensors in detecting and tracking the targets. This is performed through a function that adjusts the measurement error covariance associated with the position information of each target according to the quality of its segmentation. In this manner, localization errors due to incorrect segmentation of the blobs are reduced thus improving tracking accuracy. Experimental results on video sequences of outdoor environments show the effectiveness of the proposed approach.
Original language | English (US) |
---|---|
Pages (from-to) | 1044-1051 |
Number of pages | 8 |
Journal | IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics |
Volume | 37 |
Issue number | 4 |
DOIs | |
State | Published - Aug 2007 |
Keywords
- Data fusion
- Object tracking
- Segmentation quality
- Video surveillance
ASJC Scopus subject areas
- Control and Systems Engineering
- Software
- Information Systems
- Human-Computer Interaction
- Computer Science Applications
- Electrical and Electronic Engineering