PyCBC inference

a python-based parameter estimation toolkit for compact binary coalescence signals

C. M. Biwer, Collin D. Capano, Soumi De, Miriam Cabero, Duncan Brown, Alexander H. Nitz, V. Raymond

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

We introduce new modules in the open-source PyCBC gravitational-wave astronomy toolkit that implement Bayesian inference for compact-object binary mergers. We review the Bayesian inference methods implemented and describe the structure of the modules. We demonstrate that the PyCBC Inference modules produce unbiased estimates of the parameters of a simulated population of binary black hole mergers. We show that the parameters’ posterior distributions obtained using our new code agree well with the published estimates for binary black holes in the first Advanced LIGO–Virgo observing run.

Original languageEnglish (US)
Article number024503
JournalPublications of the Astronomical Society of the Pacific
Volume131
Issue number996
DOIs
StatePublished - Feb 1 2019

Fingerprint

coalescence
inference
merger
coalescing
modules
astronomy
estimates
gravitational waves
parameter estimation
parameter
distribution
code
method

Keywords

  • Gravitational waves
  • Methods: data analysis
  • Methods: statistical
  • Online material: color figures

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

PyCBC inference : a python-based parameter estimation toolkit for compact binary coalescence signals. / Biwer, C. M.; Capano, Collin D.; De, Soumi; Cabero, Miriam; Brown, Duncan; Nitz, Alexander H.; Raymond, V.

In: Publications of the Astronomical Society of the Pacific, Vol. 131, No. 996, 024503, 01.02.2019.

Research output: Contribution to journalArticle

Biwer, C. M. ; Capano, Collin D. ; De, Soumi ; Cabero, Miriam ; Brown, Duncan ; Nitz, Alexander H. ; Raymond, V. / PyCBC inference : a python-based parameter estimation toolkit for compact binary coalescence signals. In: Publications of the Astronomical Society of the Pacific. 2019 ; Vol. 131, No. 996.
@article{1c52a8ca58134e7cbcc2358930776406,
title = "PyCBC inference: a python-based parameter estimation toolkit for compact binary coalescence signals",
abstract = "We introduce new modules in the open-source PyCBC gravitational-wave astronomy toolkit that implement Bayesian inference for compact-object binary mergers. We review the Bayesian inference methods implemented and describe the structure of the modules. We demonstrate that the PyCBC Inference modules produce unbiased estimates of the parameters of a simulated population of binary black hole mergers. We show that the parameters’ posterior distributions obtained using our new code agree well with the published estimates for binary black holes in the first Advanced LIGO–Virgo observing run.",
keywords = "Gravitational waves, Methods: data analysis, Methods: statistical, Online material: color figures",
author = "Biwer, {C. M.} and Capano, {Collin D.} and Soumi De and Miriam Cabero and Duncan Brown and Nitz, {Alexander H.} and V. Raymond",
year = "2019",
month = "2",
day = "1",
doi = "10.1088/1538-3873/aaef0b",
language = "English (US)",
volume = "131",
journal = "Publications of the Astronomical Society of the Pacific",
issn = "0004-6280",
publisher = "University of Chicago",
number = "996",

}

TY - JOUR

T1 - PyCBC inference

T2 - a python-based parameter estimation toolkit for compact binary coalescence signals

AU - Biwer, C. M.

AU - Capano, Collin D.

AU - De, Soumi

AU - Cabero, Miriam

AU - Brown, Duncan

AU - Nitz, Alexander H.

AU - Raymond, V.

PY - 2019/2/1

Y1 - 2019/2/1

N2 - We introduce new modules in the open-source PyCBC gravitational-wave astronomy toolkit that implement Bayesian inference for compact-object binary mergers. We review the Bayesian inference methods implemented and describe the structure of the modules. We demonstrate that the PyCBC Inference modules produce unbiased estimates of the parameters of a simulated population of binary black hole mergers. We show that the parameters’ posterior distributions obtained using our new code agree well with the published estimates for binary black holes in the first Advanced LIGO–Virgo observing run.

AB - We introduce new modules in the open-source PyCBC gravitational-wave astronomy toolkit that implement Bayesian inference for compact-object binary mergers. We review the Bayesian inference methods implemented and describe the structure of the modules. We demonstrate that the PyCBC Inference modules produce unbiased estimates of the parameters of a simulated population of binary black hole mergers. We show that the parameters’ posterior distributions obtained using our new code agree well with the published estimates for binary black holes in the first Advanced LIGO–Virgo observing run.

KW - Gravitational waves

KW - Methods: data analysis

KW - Methods: statistical

KW - Online material: color figures

UR - http://www.scopus.com/inward/record.url?scp=85060896338&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85060896338&partnerID=8YFLogxK

U2 - 10.1088/1538-3873/aaef0b

DO - 10.1088/1538-3873/aaef0b

M3 - Article

VL - 131

JO - Publications of the Astronomical Society of the Pacific

JF - Publications of the Astronomical Society of the Pacific

SN - 0004-6280

IS - 996

M1 - 024503

ER -