Properties and Corrosion Performance of Self-reinforced Composite PEEK for Proposed Use as a Modular Taper Gasket

Eric S. Ouellette, Jeremy L. Gilbert

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


Background: Fretting corrosion in medical alloys is a persistent problem, and the need for biomaterials that can effectively suppress mechanically assisted crevice corrosion in modular taper junctions or otherwise insulate metal-on-metal interfaces in mechanically demanding environments is as yet unmet. Questions/purposes: The purpose of this study is to characterize a novel material, self-reinforced composite polyetheretherketone (SRC-PEEK) and to evaluate its ability to inhibit fretting corrosion in a pin-on-disk metal-on-metal interface test. Methods: SRC-PEEK was fabricated by hot compaction of in-house-made PEEK fibers by compacting uniaxial layups at 344°C under a load of 18,000 N for 10 minutes. SRC-PEEK, bulk isotropic PEEK, and the in-house-made PEEK fibers were analyzed for thermal transitions (T g , T m ) through differential scanning calorimetry, crystallinity, crystal size, crystalline orientation (Hermanns orientation parameter) through wide-angle x-ray scattering, and modulus, tensile strength, yield stress, and strain to failure through monotonic tensile testing. SRC-insulated pin-on-disk samples were compared with metal-on-metal control samples in pin-on-disk fretting corrosion experiments using fretting current and fretting mechanics measurements. Fifty-micron cyclic motion at 2.5 Hz was applied to the interface, first over a range of loads (0.5–35 N) while held at −0.05 V versus Ag/AgCl and then over a range of voltages (−0.5 to 0.5 V) at a constant contact stress of 73 ± 19 MPa for SRC-PEEK and 209 ± 41 MPa for metal-on-metal, which were different for each group as a result of changes in true contact area due to variations in modulus between sample groups. Pins, disks, and SRC samples were imaged for damage (on alloy and SRC surfaces) and evidence of corrosion (on alloy pin and disk surfaces). SRC specimens were analyzed for traces of alloy transferred to the surface using energy dispersive spectroscopy after pin-on-disk testing. Results: SRC-PEEK showed improved mechanical properties to bulk PEEK (modulus = 5.0 ± 0.3 GPa, 2.8 ± 0.1 GPa, respectively, p < 0.001) and higher crystallinity to bulk PEEK (44.2% ± 3%, 39.5% ± 0.5%, respectively, p = 0.039), but had comparable crystalline orientation as compared with the initial PEEK fibers. SRC-PEEK reduced fretting currents compared with metal-on-metal controls by two to three orders of magnitude in both variable load (4.0E−5 ± 3.8E−5 μA versus 2.9E−3 ± 7.1E−4 μA, respectively, p = 0.018) and variable potential (7.5E−6 ± 4.7E−6 μA versus 5.3E−3 ± 1.4E−3 μA, respectively, p = 0.022) fretting corrosion testing. Minimal damage was observed on surfaces insulated with SRC-PEEK, whereas control surfaces showed considerable fretting corrosion damage and metal transfer. Conclusions: The SRC-PEEK gaskets in this study demonstrated higher crystallinity and crystalline orientation and improved monotonic tensile properties compared with bulk PEEK with the ability to effectively insulate Ti6Al4V and CoCrMo alloy surfaces and prevent the initiation of fretting corrosion under high contact-stress conditions. Clinical Relevance: This novel SRC-PEEK material may offer potential as a thin film gasket material for modular tapers. Pending further in vitro and in vivo analyses, this approach may be able to preserve the advantages of modular junctions for surgeons while potentially limiting the downside risks associated with mechanically assisted crevice corrosion.

Original languageEnglish (US)
Pages (from-to)2414-2427
Number of pages14
JournalClinical Orthopaedics and Related Research
Issue number11
StatePublished - Nov 1 2016

ASJC Scopus subject areas

  • Surgery
  • Orthopedics and Sports Medicine


Dive into the research topics of 'Properties and Corrosion Performance of Self-reinforced Composite PEEK for Proposed Use as a Modular Taper Gasket'. Together they form a unique fingerprint.

Cite this