Probabilistic inference using stochastic spiking neural networks on a neurosynaptic processor

Khadeer Ahmed, Amar Shrestha, Qinru Qiu, Qing Wu

Research output: Chapter in Book/Entry/PoemConference contribution

13 Scopus citations

Abstract

Spiking neural networks are rapidly gaining popularity for their ability to perform efficient computation akin to the way a brain processes information. It has the potential to achieve low cost and high energy efficiency due to the distributed nature of neural computation and the use of low energy spikes for information exchange. A stochastic spiking neural network naturally can be used to realize Bayesian inference. IBM's TrueNorth is a neurosynaptic processor that has more than 1 million digital spiking neurons and 268 million digital synapses with less than 200 mW peak power. In this paper we propose the first work that converts an inference network to a spiking neural network that runs on the TrueNorth processor. Using inference-based sentence construction as a case study, we discuss algorithms that transform an inference network to a spiking neural network, and a spiking neural network to TrueNorth corelet designs. In our experiments, the TrueNorth spiking neural network constructed sentences have a matching accuracy of 88% while consuming an average power of 0.205 mW.

Original languageEnglish (US)
Title of host publication2016 International Joint Conference on Neural Networks, IJCNN 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4286-4293
Number of pages8
ISBN (Electronic)9781509006199
DOIs
StatePublished - Oct 31 2016
Event2016 International Joint Conference on Neural Networks, IJCNN 2016 - Vancouver, Canada
Duration: Jul 24 2016Jul 29 2016

Publication series

NameProceedings of the International Joint Conference on Neural Networks
Volume2016-October

Other

Other2016 International Joint Conference on Neural Networks, IJCNN 2016
Country/TerritoryCanada
CityVancouver
Period7/24/167/29/16

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Probabilistic inference using stochastic spiking neural networks on a neurosynaptic processor'. Together they form a unique fingerprint.

Cite this