Privacy-preserving obfuscation of critical infrastructure networks

Ferdinando Fioretto, Terrence W.K. Mak, Pascal Van Hentenryck

Research output: Chapter in Book/Entry/PoemConference contribution

9 Scopus citations

Abstract

The paper studies how to release data about a critical infrastructure network (e.g., a power network or a transportation network) without disclosing sensitive information that can be exploited by malevolent agents, while preserving the realism of the network. It proposes a novel obfuscation mechanism that combines several privacy-preserving building blocks with a bi-level optimization model to significantly improve accuracy. The obfuscation is evaluated for both realism and privacy properties on real energy and transportation networks. Experimental results show the obfuscation mechanism substantially reduces the potential damage of an attack exploiting the released data to harm the real network.

Original languageEnglish (US)
Title of host publicationProceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
EditorsSarit Kraus
PublisherInternational Joint Conferences on Artificial Intelligence
Pages1086-1092
Number of pages7
ISBN (Electronic)9780999241141
DOIs
StatePublished - 2019
Event28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, China
Duration: Aug 10 2019Aug 16 2019

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2019-August
ISSN (Print)1045-0823

Conference

Conference28th International Joint Conference on Artificial Intelligence, IJCAI 2019
Country/TerritoryChina
CityMacao
Period8/10/198/16/19

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Privacy-preserving obfuscation of critical infrastructure networks'. Together they form a unique fingerprint.

Cite this