Preservation of osteogenic capacity following shape memory triggering of foam and e-spun scaffolds

J. Wang, L. F. Tseng, R. M. Baker, J. H. Henderson

Research output: Chapter in Book/Entry/PoemConference contribution

1 Scopus citations

Abstract

Shape memory polymers (SMPs) have received significant attention for their potential to be applied in the development of dynamic, functional scaffolds for tissue engineering and regenerative medicine. Recent work has employed shape memory polymers in the development of topography-changing substrates, and these studies have shown that changes in topography can direct cell alignment, cell migration, and stem cell lineage commitment. Additional efforts have focused on expanding these strategies to 3D scaffolds that are capable of undergoing architecture changes under physiological conditions. Such shape changing scaffolds show promise for regenerative medicine applications, but it remains unknown whether shape memory actuated changes in 3D architecture have detrimental effect on the differentiation capacity of stem cells resident in the scaffold during the change. In this study, we investigated the effect of architectural changes in 3D foams and fiber mats on the osteogenic capacity of human adipose-derived stem cells. The results demonstrate osteogenic capacity to be preserved following shape memory triggering, with no reduction in osteogenesis compared to a static control.

Original languageEnglish (US)
Title of host publication2015 41st Annual Northeast Biomedical Engineering Conference, NEBEC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781479983605
DOIs
StatePublished - Jun 2 2015
Event2015 41st Annual Northeast Biomedical Engineering Conference, NEBEC 2015 - Troy, United States
Duration: Apr 17 2015Apr 19 2015

Publication series

Name2015 41st Annual Northeast Biomedical Engineering Conference, NEBEC 2015

Other

Other2015 41st Annual Northeast Biomedical Engineering Conference, NEBEC 2015
Country/TerritoryUnited States
CityTroy
Period4/17/154/19/15

ASJC Scopus subject areas

  • Biotechnology
  • Cancer Research
  • Cell Biology
  • Molecular Medicine
  • Biomedical Engineering
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Preservation of osteogenic capacity following shape memory triggering of foam and e-spun scaffolds'. Together they form a unique fingerprint.

Cite this