Potential epigenetic biomarkers of obesity-related insulin resistance in human whole-blood

Samantha E. Day, Richard L. Coletta, Joon Young Kim, Luis A. Garcia, Latoya E. Campbell, Tonya R. Benjamin, Lori R. Roust, Elena A. De Filippis, Lawrence J. Mandarino, Dawn K. Coletta

Research output: Contribution to journalArticle

11 Scopus citations

Abstract

Obesity can increase the risk of complex metabolic diseases, including insulin resistance. Moreover, obesity can be caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are not well defined. Therefore, the identification of novel epigenetic biomarkers of obesity allows for a more complete understanding of the disease and its underlying insulin resistance. The aim of our study was to identify DNA methylation changes in whole-blood that were strongly associated with obesity and insulin resistance. Whole-blood was obtained from lean (n = 10; BMI = 23.6 ± 0.7 kg/m2) and obese (n = 10; BMI = 34.4 ± 1.3 kg/m2) participants in combination with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. We performed reduced representation bisulfite sequencing on genomic DNA isolated from the blood. We identified 49 differentially methylated cytosines (DMCs; q < 0.05) that were altered in obese compared with lean participants. We identified 2 sites (Chr.21:46,957,981 and Chr.21:46,957,915) in the 5’ untranslated region of solute carrier family 19 member 1 (SLC19A1) with decreased methylation in obese participants (lean 0.73 ± 0.11 vs. obese 0.09 ± 0.05; lean 0.68 ± 0.10 vs. obese 0.09 ± 0.05, respectively). These 2 DMCs identified by obesity were also significantly predicted by insulin sensitivity (r = 0.68, P = 0.003; r = 0.66; P = 0.004). In addition, we performed a differentially methylated region (DMR) analysis and demonstrated a decrease in methylation of Chr.21:46,957,915–46,958,001 in SLC19A1 of −34.9% (70.4% lean vs. 35.5% obese). The decrease in whole-blood SLC19A1 methylation in our obese participants was similar to the change observed in skeletal muscle (Chr.21:46,957,981, lean 0.70 ± 0.09 vs. obese 0.31 ± 0.11 and Chr.21:46,957,915, lean 0.72 ± 0.11 vs. obese 0.31 ± 0.13). Pyrosequencing analysis further demonstrated a decrease in methylation at Chr.21:46,957,915 in both whole-blood (lean 0.71 ± 0.10 vs. obese 0.18 ± 0.06) and skeletal muscle (lean 0.71 ± 0.10 vs. obese 0.30 ± 0.11). Our findings demonstrate a new potential epigenetic biomarker, SLC19A1, for obesity and its underlying insulin resistance.

Original languageEnglish (US)
Pages (from-to)254-263
Number of pages10
JournalEpigenetics
Volume12
Issue number4
DOIs
StatePublished - Apr 3 2017
Externally publishedYes

    Fingerprint

Keywords

  • Biomarker
  • DNA methylation
  • insulin resistance
  • obesity
  • whole-blood

ASJC Scopus subject areas

  • Molecular Biology
  • Cancer Research

Cite this

Day, S. E., Coletta, R. L., Kim, J. Y., Garcia, L. A., Campbell, L. E., Benjamin, T. R., Roust, L. R., De Filippis, E. A., Mandarino, L. J., & Coletta, D. K. (2017). Potential epigenetic biomarkers of obesity-related insulin resistance in human whole-blood. Epigenetics, 12(4), 254-263. https://doi.org/10.1080/15592294.2017.1281501