TY - JOUR
T1 - Potassium transport and content during G1 and S phase following serum stimulation of 3T3 cells
AU - Tupper, Joseph T.
AU - Zorgniotti, Flavia
AU - Mills, Barry
PY - 1977/6
Y1 - 1977/6
N2 - The effect of serum stimulation on unidirectional and net K flux and their relationship to the initiation of DNA synthesis has been investigated in mouse 3T3 fibroblasts. Stimulation of quiescent 3T3 cells with 20% serum results in the initiation of S phase approximately ten hours after serum addition. During transition from G1 to S phase distinct changes in K transport and cellular K content occur. Total unidirectional K influx undergoes an immediate 2‐fold increase upon serum addition, an observation in qualitative agreement with previous results (Rozengurt and Heppel, 1975). This total increase in unidirectional K influx represents a proportional increase in the active, ouabain sensitive component and the K‐K exchange component. The initial increase in total flux is followed by a gradual decline over a 16‐hour period to levels approaching those of quiescent cells. Following the initial increase in unidirectional K influx is an approximately 75% increase in cell K on a per milligram protein basis or a 40% increase on a per volume basis. This increase peaks at four to five hours and then declines to initial levels at 10 to 14 hours. Populations of quiescent cells given 20% serum plus 0.5 mM ouabain simultaneously are totally blocked from entering S phase, as determined by the appearance of 3H‐thymidine labeled nuclei. However, if the ouabain is removed after six hours these cells then undergo the same changes in unidirectional K influx and content as serum stimulated cells with entrance into S phase retarded by five to six hours. If ouabain is added to serum stimulated cells at six hours, after the increase in K transport and K content have occurred, entrance into S phase is not entirely blocked. In cells stimulated with serum and 0.5 mM dBcAMP plus 1 mM theophylline simultaneously, entrance into S phase is greatly reduced as compared to serum stimulation only. However, the early and late changes in K flux and K content are not substantially altered. This indicates that the K transport events associated with G1 and early S phase are not directly regulated by changes in cAMP levels which follow serum stimulation.
AB - The effect of serum stimulation on unidirectional and net K flux and their relationship to the initiation of DNA synthesis has been investigated in mouse 3T3 fibroblasts. Stimulation of quiescent 3T3 cells with 20% serum results in the initiation of S phase approximately ten hours after serum addition. During transition from G1 to S phase distinct changes in K transport and cellular K content occur. Total unidirectional K influx undergoes an immediate 2‐fold increase upon serum addition, an observation in qualitative agreement with previous results (Rozengurt and Heppel, 1975). This total increase in unidirectional K influx represents a proportional increase in the active, ouabain sensitive component and the K‐K exchange component. The initial increase in total flux is followed by a gradual decline over a 16‐hour period to levels approaching those of quiescent cells. Following the initial increase in unidirectional K influx is an approximately 75% increase in cell K on a per milligram protein basis or a 40% increase on a per volume basis. This increase peaks at four to five hours and then declines to initial levels at 10 to 14 hours. Populations of quiescent cells given 20% serum plus 0.5 mM ouabain simultaneously are totally blocked from entering S phase, as determined by the appearance of 3H‐thymidine labeled nuclei. However, if the ouabain is removed after six hours these cells then undergo the same changes in unidirectional K influx and content as serum stimulated cells with entrance into S phase retarded by five to six hours. If ouabain is added to serum stimulated cells at six hours, after the increase in K transport and K content have occurred, entrance into S phase is not entirely blocked. In cells stimulated with serum and 0.5 mM dBcAMP plus 1 mM theophylline simultaneously, entrance into S phase is greatly reduced as compared to serum stimulation only. However, the early and late changes in K flux and K content are not substantially altered. This indicates that the K transport events associated with G1 and early S phase are not directly regulated by changes in cAMP levels which follow serum stimulation.
UR - http://www.scopus.com/inward/record.url?scp=0017377375&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0017377375&partnerID=8YFLogxK
U2 - 10.1002/jcp.1040910313
DO - 10.1002/jcp.1040910313
M3 - Article
C2 - 193867
AN - SCOPUS:0017377375
SN - 0021-9541
VL - 91
SP - 429
EP - 440
JO - Journal of Cellular Physiology
JF - Journal of Cellular Physiology
IS - 3
ER -