Point absorbers in Advanced LIGO

Aidan F. Brooks, Gabriele Vajente, Hiro Yamamoto, Rich Abbott, Carl Adams, Rana X. Adhikari, Alena Ananyeva, Stephen Appert, Koji Arai, Joseph S. Areeda, Yasmeen Asali, Stuart M. Aston, Corey Austin, Anne M. Baer, Matthew Ball, Stefan W. Ballmer, Sharan Banagiri, David Barker, Lisa Barsotti, Jeffrey BartlettBeverly K. Berger, Joseph Betzwieser, Dripta Bhattacharjee, Garilynn Billingsley, Sebastien Biscans, Carl D. Blair, Ryan M. Blair, Nina Bode, Phillip Booker, Rolf Bork, Alyssa Bramley, Daniel D. Brown, Aaron Buikema, Craig Cahillane, Kipp C. Cannon, Huy Tuong Cao, Xu Chen, Alexei A. Ciobanu, Filiberto Clara, Camilla Compton, Sam J. Cooper, Kenneth R. Corley, Stefan T. Countryman, Pep B. Covas, Dennis C. Coyne, Laurence E. Datrier, Derek Davis, Chiara D. Difronzo, Katherine L. Dooley, Jenne C. Driggers, Peter Dupej, Sheila E. Dwyer, Anamaria Effler, Todd Etzel, Matthew Evans, Tom M. Evans, Jon Feicht, Alvaro Fernandez-Galiana, Peter Fritschel, Valery V. Frolov, Paul Fulda, Michael Fyffe, Joe A. Giaime, Dwayne D. Giardina, Patrick Godwin, Evan Goetz, Slawomir Gras, Corey Gray, Rachel Gray, Anna C. Green, Anchal Gupta, Eric K. Gustafson, Dick Gustafson, Evan Hall, Jonathan Hanks, Joe Hanson, Terra Hardwick, Raine K. Hasskew, Matthew C. Heintze, Adrian F. Helmling-Cornell, Nathan A. Holland, Kiamu Izmui, Wenxuan Jia, Jeff D. Jones, Shivaraj Kandhasamy, Sudarshan Karki, Marie Kasprzack, Keita Kawabe, Nutsinee Kijbunchoo, Peter J. King, Jeffrey S. Kissel, Rahul Kumar, Michael Landry, Benjamin B. Lane, Brian Lantz, Michael Laxen, Yannick K. Lecoeuche, Jessica Leviton, Liu Jian, Marc Lormand, Andrew P. Lundgren, Ronaldas Macas, Myron Macinnis, Duncan M. Macleod, Georgia L. Mansell, Szabolcs Marka, Zsuzsanna Marka, Denis V. Martynov, Ken Mason, Thomas J. Massinger, Fabrice Matichard, Nergis Mavalvala, Richard McCarthy, David E. McClelland, Scott McCormick, Lee McCuller, Jessica McIver, Terry McRae, Gregory Mendell, Kara Merfeld, Edmond L. Merilh, Fabian Meylahn, Timesh Mistry, Richard Mittleman, Gerardo Moreno, Conor M. Mow-Lowry, Simone Mozzon, Adam Mullavey, Timothy J. Nelson, Philippe Nguyen, Laura K. Nuttall, Jason Oberling, Richard J. Oram, Charles Osthelder, David J. Ottaway, Harry Overmier, Jordan R. Palamos, William Parker, Ethan Payne, Arnaud Pele, Reilly Penhorwood, Carlos J. Perez, Marc Pirello, Hugh Radkins, Karla E. Ramirez, Jonathan W. Richardson, Keith Riles, Norna A. Robertson, Jameson G. Rollins, Chandra L. Romel, Janeen H. Romie, Michael P. Ross, Kyle Ryan, Travis Sadecki, Eduardo J. Sanchez, Luis E. Sanchez, Saravanan R. Tiruppatturrajamanikkam, Richard L. Savage, Dean Schaetzl, Roman Schnabel, Robert M. Schofield, Eyal Schwartz, Danny Sellers, Thomas Shaffer, Daniel Sigg, Bram J. Slagmolen, Joshua R. Smith, Siddharth Soni, Borja Sorazu, Andrew P. Spencer, Ken A. Strain, Ling Sun, Marek J. Szczepanczyk, Michael Thomas, Patrick Thomas, Keith A. Thorne, Karl Toland, Calum I. Torrie, Gary Traylor, Maggie Tse, Alexander L. Urban, Guillermo Valdes, Daniel C. Vander-Hyde, Peter J. Veitch, Krishna Venkateswara, Gautam Venugopalan, Aaron D. Viets, Thomas Vo, Cheryl Vorvick, Madeline Wade, Robert L. Ward, Jim Warner, Betsy Weaver, Rainer Weiss, Chris Whittle, Benno Willke, Christopher C. Wipf, Liting Xiao, Hang Yu, Haocun Yu, Liyuan Zhang, Michael E. Zucker, John Zweizig

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry–Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and, hence, limit GW sensitivity, but it suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises.

Original languageEnglish (US)
Pages (from-to)4047-4063
Number of pages17
JournalApplied Optics
Volume60
Issue number13
DOIs
StatePublished - May 1 2021

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Engineering (miscellaneous)
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Point absorbers in Advanced LIGO'. Together they form a unique fingerprint.

Cite this