Abstract
We report photocarrier time-of-flight measurements in diode structures made of highly porous crystalline silicon. The corresponding electron and hole drift mobilities are very small (<10-4 cm2/V s) compared to homogeneous crystalline silicon. The mobilities are dispersive (i.e., having a power-law decay with time or length-scale), but are only weakly temperature-dependent. The dispersion parameter lies in the range 0.55-0.65 for both electrons and holes. We conclude that the drift mobilities are limited by the nanoporous geometry, and not by disorder-induced localized states acting as traps. This conclusion is surprising in the context of luminescence models based on radiative recombination of localized excitons.
Original language | English (US) |
---|---|
Pages (from-to) | 129-138 |
Number of pages | 10 |
Journal | Chemical Physics |
Volume | 284 |
Issue number | 1-2 |
DOIs | |
State | Published - Nov 1 2002 |
ASJC Scopus subject areas
- General Physics and Astronomy
- Physical and Theoretical Chemistry