TY - GEN
T1 - Performance criteria for dynamic window systems using nano-structured behaviors for energy harvesting and environmental comfort
AU - Andow, Brandon C.
AU - Krietemeyer, Bess
AU - Stark, Peter R.H.
AU - Dyson, Anna H.
PY - 2013
Y1 - 2013
N2 - Contemporary commercial building types continue to incorporate predominantly glazed envelope systems, despite the associated challenges with thermal regulation, visual comfort, and increased energy consumption. The advantage of window systems that could adaptively respond to changes in the environment while meeting variable demands for building energy use and occupant comfort has led to considerable investment towards the advancement of dynamic window technologies. Although these technologies demonstrate cost warranting improvements in building energy performance, they face challenges with visible clarity, color variability and response time. Furthermore, they remain challenged with respect to their ability to adequately control important qualitative criteria for daylighting such as glare and balanced light redistribution within occupied spaces. The material dependent limitations of advanced glazing technologies have initiated a search for new thin film solutions, with new device possibilities emerging across many fields. Idealized window performance has traditionally been defined as the dynamic control of solar transmittance, glare, solar gain and daylighting at any time to manage energy, comfort and view. However, in the context of wider goals towards building energy self-sufficiency through the achievement of on-site net zero energy, emerging material systems point towards other physical phenomena for achieving transparency modulation and energy harvesting, demanding a broader range of criteria for advanced glazing controls that allow the glazed building envelope to exist as a transfer function that can address and potentially accommodate the following five principal criteria: 1. Thermal management; 2. Daylighting harvesting and modulation; 3. Maintenance of views; 4. Active power capture, transfer, storage and redistribution; 5. Information Display. Building upon the existing set of performance requirements for high-performance glazing, this paper prescribes additional system functions using nano-structured behaviors operating within insulated glazing units (IGU) for energy harvesting opportunities and increased environmental comfort. Specifically, the proposed goal is to incorporate multiple functions that span energy performance with culturally valuable attributes such as variable patterning and information display.
AB - Contemporary commercial building types continue to incorporate predominantly glazed envelope systems, despite the associated challenges with thermal regulation, visual comfort, and increased energy consumption. The advantage of window systems that could adaptively respond to changes in the environment while meeting variable demands for building energy use and occupant comfort has led to considerable investment towards the advancement of dynamic window technologies. Although these technologies demonstrate cost warranting improvements in building energy performance, they face challenges with visible clarity, color variability and response time. Furthermore, they remain challenged with respect to their ability to adequately control important qualitative criteria for daylighting such as glare and balanced light redistribution within occupied spaces. The material dependent limitations of advanced glazing technologies have initiated a search for new thin film solutions, with new device possibilities emerging across many fields. Idealized window performance has traditionally been defined as the dynamic control of solar transmittance, glare, solar gain and daylighting at any time to manage energy, comfort and view. However, in the context of wider goals towards building energy self-sufficiency through the achievement of on-site net zero energy, emerging material systems point towards other physical phenomena for achieving transparency modulation and energy harvesting, demanding a broader range of criteria for advanced glazing controls that allow the glazed building envelope to exist as a transfer function that can address and potentially accommodate the following five principal criteria: 1. Thermal management; 2. Daylighting harvesting and modulation; 3. Maintenance of views; 4. Active power capture, transfer, storage and redistribution; 5. Information Display. Building upon the existing set of performance requirements for high-performance glazing, this paper prescribes additional system functions using nano-structured behaviors operating within insulated glazing units (IGU) for energy harvesting opportunities and increased environmental comfort. Specifically, the proposed goal is to incorporate multiple functions that span energy performance with culturally valuable attributes such as variable patterning and information display.
KW - Daylighting
KW - Dynamic glazing
KW - Dynamic windows
KW - Energy harvesting
KW - Environmental comfort
KW - Nano-structured behaviors
UR - http://www.scopus.com/inward/record.url?scp=84878735053&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84878735053&partnerID=8YFLogxK
U2 - 10.1117/12.2012262
DO - 10.1117/12.2012262
M3 - Conference contribution
AN - SCOPUS:84878735053
SN - 9780819494757
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013
T2 - 2013 SPIE Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2013
Y2 - 10 March 2013 through 14 March 2013
ER -