TY - JOUR
T1 - Parametric order constraints in multinomial processing tree models
T2 - An extension of Knapp and Batchelder (2004)
AU - Klauer, Karl Christoph
AU - Singmann, Henrik
AU - Kellen, David
N1 - Publisher Copyright:
© 2014 Elsevier Inc.
PY - 2015/2/1
Y1 - 2015/2/1
N2 - Multinomial processing tree (MPT) models are tools for disentangling the contributions of latent cognitive processes in a given experimental paradigm. The present note analyzes MPT models subject to order constraints on subsets of its parameters. The constraints that we consider frequently arise in cases where the response categories are ordered in some sense such as in confidence-rating data, Likert scale data, where graded guessing tendencies or response biases are created via base-rate or payoff manipulations, in the analysis of contingency tables with order constraints, and in many other cases. We show how to construct an MPT model without order constraints that is statistically equivalent to the MPT model with order constraints. This new closure result extends the mathematical analysis of the MPT class, and it offers an approach to order-restricted inference that extends the approaches discussed by Knapp and Batchelder (2004). The usefulness of the method is illustrated by means of an analysis of an order-constrained version of the two-high-threshold model for confidence ratings.
AB - Multinomial processing tree (MPT) models are tools for disentangling the contributions of latent cognitive processes in a given experimental paradigm. The present note analyzes MPT models subject to order constraints on subsets of its parameters. The constraints that we consider frequently arise in cases where the response categories are ordered in some sense such as in confidence-rating data, Likert scale data, where graded guessing tendencies or response biases are created via base-rate or payoff manipulations, in the analysis of contingency tables with order constraints, and in many other cases. We show how to construct an MPT model without order constraints that is statistically equivalent to the MPT model with order constraints. This new closure result extends the mathematical analysis of the MPT class, and it offers an approach to order-restricted inference that extends the approaches discussed by Knapp and Batchelder (2004). The usefulness of the method is illustrated by means of an analysis of an order-constrained version of the two-high-threshold model for confidence ratings.
KW - Categorical data
KW - Mathematical models
KW - Multinomial distribution
KW - Multinomial processing tree models
UR - http://www.scopus.com/inward/record.url?scp=84916941661&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84916941661&partnerID=8YFLogxK
U2 - 10.1016/j.jmp.2014.11.001
DO - 10.1016/j.jmp.2014.11.001
M3 - Article
AN - SCOPUS:84916941661
SN - 0022-2496
VL - 64-65
SP - 1
EP - 7
JO - Journal of Mathematical Psychology
JF - Journal of Mathematical Psychology
ER -