Optimum power randomization for the minimization of outage probability

Berkan Dulek, N. Denizcan Vanli, Sinan Gezici, Pramod K. Varshney

Research output: Contribution to journalArticle

8 Scopus citations

Abstract

The optimum power randomization problem is studied to minimize outage probability in flat block-fading Gaussian channels under an average transmit power constraint and in the presence of channel distribution information at the transmitter. When the probability density function of the channel power gain is continuously differentiable with a finite second moment, it is shown that the outage probability curve is a nonincreasing function of the normalized transmit power with at least one inflection point and the total number of inflection points is odd. Based on this result, it is proved that the optimum power transmission strategy involves randomization between at most two power levels. In the case of a single inflection point, the optimum strategy simplifies to on-off signaling for weak transmitters. Through analytical and numerical discussions, it is shown that the proposed framework can be adapted to a wide variety of scenarios including log-normal shadowing, diversity combining over Rayleigh fading channels, Nakagami-m fading, spectrum sharing, and jamming applications. We also show that power randomization does not necessarily improve the outage performance when the finite second moment assumption is violated by the power distribution of the fading.

Original languageEnglish (US)
Article number6574875
Pages (from-to)4627-4637
Number of pages11
JournalIEEE Transactions on Wireless Communications
Volume12
Issue number9
DOIs
StatePublished - Aug 12 2013

Keywords

  • Power randomization
  • fading
  • jamming
  • outage probability
  • wireless communications

ASJC Scopus subject areas

  • Computer Science Applications
  • Electrical and Electronic Engineering
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Optimum power randomization for the minimization of outage probability'. Together they form a unique fingerprint.

  • Cite this