Abstract
An M-ary communication system is considered in which the transmitter and the receiver are connected via multiple additive (possibly non-Gaussian) noise channels, any one of which can be utilized for the transmission of a given symbol. Contrary to deterministic signaling (i.e., employing a fixed constellation), a stochastic signaling approach is adopted by treating the signal values transmitted for each information symbol over each channel as random variables. In particular, the joint optimization of the channel switching (i.e., time sharing among different channels) strategy, stochastic signals, and decision rules at the receiver is performed in order to minimize the average probability of error under an average transmit power constraint. It is proved that the solution to this problem involves either one of the following: (i) deterministic signaling over a single channel, (ii) randomizing (time sharing) between two different signal constellations over a single channel, or (iii) switching (time sharing) between two channels with deterministic signaling over each channel. For all cases, the optimal strategies are shown to employ corresponding maximum a posteriori probability (MAP) decision rules at the receiver. In addition, sufficient conditions are derived in order to specify whether the proposed strategy can or cannot improve the error performance over the conventional approach, in which a single channel is employed with deterministic signaling at the average power limit. Finally, numerical examples are presented to illustrate the theoretical results.
Original language | English (US) |
---|---|
Pages (from-to) | 153-168 |
Number of pages | 16 |
Journal | Digital Signal Processing: A Review Journal |
Volume | 26 |
Issue number | 1 |
DOIs | |
State | Published - Mar 2014 |
Keywords
- Channel switching
- Detection
- Error probability
- M-ary communications
- Non-Gaussian
- Stochastic signaling
ASJC Scopus subject areas
- Signal Processing
- Computer Vision and Pattern Recognition
- Statistics, Probability and Uncertainty
- Computational Theory and Mathematics
- Electrical and Electronic Engineering
- Artificial Intelligence
- Applied Mathematics