TY - GEN
T1 - Optimal design and management of a smart residential PV and energy storage system
AU - Zhu, Di
AU - Wang, Yanzhi
AU - Chang, Naehyuck
AU - Pedram, Massoud
PY - 2014
Y1 - 2014
N2 - Solar photovoltaic (PV) technology has been widely deployed in large power plants operated by utility companies. However, the home owners are not yet convinced of the saving cost benefits of this technology, and consequently, in spite of government subsidies, they have been reluctant to install PV systems in their homes. The main reason for this is the absence of a complete and truthful analysis which could explain to home owners under what conditions spending money on a PV system can actually save them money over a long-term, but known, time horizon. This paper thus presents a design and management mechanism for a smart residential energy system comprising PV modules, electrical energy storage banks, and conversion circuits connected to the power grid. First, we figure out how much savings can be achieved by a system with given PV modules and EES bank capacities by optimally solving the daily energy flow control problem of such a system. Based on the daily optimization results, we come up with the optimal system specifications with a fixed budget. Experiments are conducted for various electricity prices and different profiles of PV output power and load demand. Results show that the designed system breaks even in 6 years and in the system lifetime achieves up to 8% annual profit besides paying back the budget.
AB - Solar photovoltaic (PV) technology has been widely deployed in large power plants operated by utility companies. However, the home owners are not yet convinced of the saving cost benefits of this technology, and consequently, in spite of government subsidies, they have been reluctant to install PV systems in their homes. The main reason for this is the absence of a complete and truthful analysis which could explain to home owners under what conditions spending money on a PV system can actually save them money over a long-term, but known, time horizon. This paper thus presents a design and management mechanism for a smart residential energy system comprising PV modules, electrical energy storage banks, and conversion circuits connected to the power grid. First, we figure out how much savings can be achieved by a system with given PV modules and EES bank capacities by optimally solving the daily energy flow control problem of such a system. Based on the daily optimization results, we come up with the optimal system specifications with a fixed budget. Experiments are conducted for various electricity prices and different profiles of PV output power and load demand. Results show that the designed system breaks even in 6 years and in the system lifetime achieves up to 8% annual profit besides paying back the budget.
UR - http://www.scopus.com/inward/record.url?scp=84903830957&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84903830957&partnerID=8YFLogxK
U2 - 10.7873/DATE2014.154
DO - 10.7873/DATE2014.154
M3 - Conference contribution
AN - SCOPUS:84903830957
SN - 9783981537024
T3 - Proceedings -Design, Automation and Test in Europe, DATE
BT - Proceedings - Design, Automation and Test in Europe, DATE 2014
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 17th Design, Automation and Test in Europe, DATE 2014
Y2 - 24 March 2014 through 28 March 2014
ER -