Optimal Bi-level quantization of i.i.d. sensor observations forbinary hypothesis testing

Qian Zhang, Pramod K. Varshney, Richard D. Wesel

Research output: Contribution to journalArticlepeer-review

66 Scopus citations

Abstract

We consider the problem of binary hypothesis testing using binary decisions from independent and identically distributed (i.i.d). sensors. Identical likelihood-ratio quantizers with threshold λ are used at the sensors to obtain sensor decisions. Under this condition, the optimal fusion rule is known to be a κ-out-of-n rule with threshold κ. For the Bayesian detection problem, we show that given κ, the probability of error is a quasi-convex function of λ and has a single minimum that is achieved by the unique optimal λ opt. Except for the trivial situation where one hypothesis is always decided, we obtain a sufficient and necessary condition on λ opt, and show that λ opt can be efficiently obtained via the SECANT algorithm. The overall optimal solution is obtained by optimizing every pair of (κ, λ). For the Neyman-Pearson detection problem, we show that the use of the Lagrange multiplier method is justified for a given fixed κ since the objective function is a quasi-convex function of λ. We further show that the receiver operating characteristic (ROC) for a fixed κ is concave downward.

Original languageEnglish (US)
Pages (from-to)2105-2111
Number of pages7
JournalIEEE Transactions on Information Theory
Volume48
Issue number7
DOIs
StatePublished - Jul 2002

Keywords

  • Decision-making
  • Multisensor systems
  • Quantization
  • Signal detection

ASJC Scopus subject areas

  • Information Systems
  • Computer Science Applications
  • Library and Information Sciences

Fingerprint

Dive into the research topics of 'Optimal Bi-level quantization of i.i.d. sensor observations forbinary hypothesis testing'. Together they form a unique fingerprint.

Cite this