On weak signal detection with compressive measurements

K. G. Nagananda, Pramod K. Varshney

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The problem of weak signal detection in Gaussian noise is addressed in the Neyman–Pearson framework with compressive measurements. A locally optimum detector is first devised assuming that the signal is nonsparse by approximating the test statistic around zero using a Taylor series, which is a good estimate only in a small radius around zero. When the signal is sparse, it is shown that the performance of this test degrades. To improve its performance, a new test is devised by deriving the Padé approximation of the test statistic around zero. Padé approximants estimate functions as the rational quotient of two lower degree polynomials and consistently have a wider radius of convergence than the Taylor series. The performance of the Padé-approximated test is better than its Taylor series counterpart and is comparable to the conventional locally optimum test with uncompressed measurements. Simulation results are presented to support the analytical findings of the work.

Original languageEnglish (US)
Pages (from-to)125-129
Number of pages5
JournalIEEE Signal Processing Letters
Volume25
Issue number1
DOIs
StatePublished - Jan 2018
Externally publishedYes

Keywords

  • Compressive sensing
  • Locally optimum detection (LOD)
  • Padé approximation

ASJC Scopus subject areas

  • Signal Processing
  • Electrical and Electronic Engineering
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'On weak signal detection with compressive measurements'. Together they form a unique fingerprint.

Cite this