TY - GEN
T1 - On energy detection for cooperative spectrum sensing
AU - Peng, Fangrong
AU - Chen, Hao
AU - Chen, Biao
PY - 2012
Y1 - 2012
N2 - Energy detection has been used almost exclusively in spectrum sensing. This paper studies the potential optimality (or sub-optimality) of the energy detector in spectrum sensing for two systems: one employing a single node and the other using multiple nodes, i.e., cooperative spectrum sensing. We consider both Gaussian channels as well as fading channels with different signaling from the primary user. For a single node case, we show that the energy detector is provably optimal for most cases and for the case when it is not theoretically optimal, its performance is nearly indistinguishable from the true optimal detector. For cooperative spectrum sensing, however, the problem becomes extremely complicated. The presence of the common signal from the primary user introduces dependence among the observations at different nodes; it is well known that for decentralized detection with dependent observations, designing optimal local decision rules typically is an NP problem. Using a recently proposed framework for distributed detection with dependent observations, we establish the optimality of energy detector for several cooperative spectrum sensing systems and point out difficulties for the remaining cases.
AB - Energy detection has been used almost exclusively in spectrum sensing. This paper studies the potential optimality (or sub-optimality) of the energy detector in spectrum sensing for two systems: one employing a single node and the other using multiple nodes, i.e., cooperative spectrum sensing. We consider both Gaussian channels as well as fading channels with different signaling from the primary user. For a single node case, we show that the energy detector is provably optimal for most cases and for the case when it is not theoretically optimal, its performance is nearly indistinguishable from the true optimal detector. For cooperative spectrum sensing, however, the problem becomes extremely complicated. The presence of the common signal from the primary user introduces dependence among the observations at different nodes; it is well known that for decentralized detection with dependent observations, designing optimal local decision rules typically is an NP problem. Using a recently proposed framework for distributed detection with dependent observations, we establish the optimality of energy detector for several cooperative spectrum sensing systems and point out difficulties for the remaining cases.
UR - http://www.scopus.com/inward/record.url?scp=84868525333&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84868525333&partnerID=8YFLogxK
U2 - 10.1109/CISS.2012.6310855
DO - 10.1109/CISS.2012.6310855
M3 - Conference contribution
AN - SCOPUS:84868525333
SN - 9781467331401
T3 - 2012 46th Annual Conference on Information Sciences and Systems, CISS 2012
BT - 2012 46th Annual Conference on Information Sciences and Systems, CISS 2012
T2 - 2012 46th Annual Conference on Information Sciences and Systems, CISS 2012
Y2 - 21 March 2012 through 23 March 2012
ER -