TY - JOUR
T1 - OccK channels from pseudomonas aeruginosa exhibit diverse single-channel electrical signatures but conserved anion selectivity
AU - Liu, Jiaming
AU - Eren, Elif
AU - Vijayaraghavan, Jagamya
AU - Cheneke, Belete R.
AU - Indic, Mridhu
AU - Van Den Berg, Bert
AU - Movileanu, Liviu
PY - 2012/3/20
Y1 - 2012/3/20
N2 - Pseudomonas aeruginosa is a Gram-negative bacterium that utilizes substrate-specific outer membrane (OM) proteins for the uptake of small, water-soluble nutrients employed in the growth and function of the cell. In this paper, we present for the first time a comprehensive single-channel examination of seven members of the OM carboxylate channel K (OccK) subfamily. Recent biochemical, functional, and structural characterization of the OccK proteins revealed their common features, such as a closely related, monomeric, 18-stranded β-barrel conformation with a kidney-shaped transmembrane pore and the presence of a basic ladder within the channel lumen. Here, we report that the OccK proteins exhibited fairly distinct unitary conductance values, in a much broader range than previously expected, which includes low (∼40-100 pS) and medium (∼100-380 pS) conductance. These proteins showed diverse single-channel dynamics of current gating transitions, revealing one-open substate (OccK3), two-open substate (OccK4-OccK6), and three-open substate (OccK1, OccK2, and OccK7) kinetics with functionally distinct conformations. Interestingly, we discovered that anion selectivity is a conserved trait among the members of the OccK subfamily, confirming the presence of a net pool of positively charged residues within their central constriction. Moreover, these results are in accord with an increased specificity and selectivity of these protein channels for negatively charged, carboxylate-containing substrates. Our findings might ignite future functional examinations and full atomistic computational studies for unraveling a mechanistic understanding of the passage of small molecules across the lumen of substrate-specific, β-barrel OM proteins.
AB - Pseudomonas aeruginosa is a Gram-negative bacterium that utilizes substrate-specific outer membrane (OM) proteins for the uptake of small, water-soluble nutrients employed in the growth and function of the cell. In this paper, we present for the first time a comprehensive single-channel examination of seven members of the OM carboxylate channel K (OccK) subfamily. Recent biochemical, functional, and structural characterization of the OccK proteins revealed their common features, such as a closely related, monomeric, 18-stranded β-barrel conformation with a kidney-shaped transmembrane pore and the presence of a basic ladder within the channel lumen. Here, we report that the OccK proteins exhibited fairly distinct unitary conductance values, in a much broader range than previously expected, which includes low (∼40-100 pS) and medium (∼100-380 pS) conductance. These proteins showed diverse single-channel dynamics of current gating transitions, revealing one-open substate (OccK3), two-open substate (OccK4-OccK6), and three-open substate (OccK1, OccK2, and OccK7) kinetics with functionally distinct conformations. Interestingly, we discovered that anion selectivity is a conserved trait among the members of the OccK subfamily, confirming the presence of a net pool of positively charged residues within their central constriction. Moreover, these results are in accord with an increased specificity and selectivity of these protein channels for negatively charged, carboxylate-containing substrates. Our findings might ignite future functional examinations and full atomistic computational studies for unraveling a mechanistic understanding of the passage of small molecules across the lumen of substrate-specific, β-barrel OM proteins.
UR - http://www.scopus.com/inward/record.url?scp=84863377489&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863377489&partnerID=8YFLogxK
U2 - 10.1021/bi300066w
DO - 10.1021/bi300066w
M3 - Article
C2 - 22369314
AN - SCOPUS:84863377489
SN - 0006-2960
VL - 51
SP - 2319
EP - 2330
JO - Biochemistry
JF - Biochemistry
IS - 11
ER -