Numerical investigation of the melting of a phase change material in a thermal storage device with embedded air flow channels

Mustafa Koz, Hamza S. Erden, H. Ezzat Khalifa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Two time-dependent mathematical and numerical models with different levels of complexity and fidelity were developed to investigate the melting of a phase change material (PCM) configured as a number of aluminum-encased, PCM-filled slabs with embedded micro-channel aluminum tubes, and with parallel air-flow passages interposed between the slabs. Melting was first analyzed with the COMSOL Multiphysics® finite-element model (FEM) in a 2-D domain representing a full-size slab. The melting process is simulated via the apparent heat capacity method. The model captures the effect of natural convection in the PCM melt as well as the conjugate heat transfer through the aluminum tubes. A fast-executing quasi 2-D reduced-order model (ROM) was developed for repetitive design optimization studies. The ROM relies on a time-dependent 1-D closed-form solution of the heat conduction equation in a melting PCM, coupled with variations of the air temperature and heat transfer coefficient. Consequently, the FEM results were employed to develop corrections to the ROM. The corrected ROM was then utilized to study the melting process in a multi-slab thermal storage device that is designed to freeze the PCM at night and release 500 W-h of cooling over a span of ∼10 h during the day.

Original languageEnglish (US)
Title of host publicationHeat Transfer in Multiphase Systems; Gas Turbine Heat Transfer; Manufacturing and Materials Processing; Heat Transfer in Electronic Equipment; Heat and Mass Transfer in Biotechnology; Heat Transfer Under Extreme Conditions; Computational Heat Transfer; Heat Transfer Visualization Gallery; General Papers on Heat Transfer; Multiphase Flow and Heat Transfer; Transport Phenomena in Manufacturing and Materials Processing
PublisherAmerican Society of Mechanical Engineers
Volume2
ISBN (Electronic)9780791850336
DOIs
StatePublished - 2016
EventASME 2016 Heat Transfer Summer Conference, HT 2016, collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels - Washington, United States
Duration: Jul 10 2016Jul 14 2016

Other

OtherASME 2016 Heat Transfer Summer Conference, HT 2016, collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
CountryUnited States
CityWashington
Period7/10/167/14/16

Keywords

  • Phase-change materials
  • Thermal energy storage

ASJC Scopus subject areas

  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint Dive into the research topics of 'Numerical investigation of the melting of a phase change material in a thermal storage device with embedded air flow channels'. Together they form a unique fingerprint.

  • Cite this

    Koz, M., Erden, H. S., & Khalifa, H. E. (2016). Numerical investigation of the melting of a phase change material in a thermal storage device with embedded air flow channels. In Heat Transfer in Multiphase Systems; Gas Turbine Heat Transfer; Manufacturing and Materials Processing; Heat Transfer in Electronic Equipment; Heat and Mass Transfer in Biotechnology; Heat Transfer Under Extreme Conditions; Computational Heat Transfer; Heat Transfer Visualization Gallery; General Papers on Heat Transfer; Multiphase Flow and Heat Transfer; Transport Phenomena in Manufacturing and Materials Processing (Vol. 2). American Society of Mechanical Engineers. https://doi.org/10.1115/HT2016-7412