Nonlinear photocarrier drift in hydrogenated amorphous silicon-germanium alloys

Homer Antoniadis, E. A. Schiff

Research output: Contribution to journalArticle

38 Scopus citations

Abstract

We have studied nonlinear effects of an electric field on the transport of both electrons and holes in a series of undoped hydrogenated amorphous silicon-germanium alloy specimens (a-Si1-xGex:H; 0<x<0.3). We measured the transient photocurrents in p-i-n diode structures as a function of electric field (1042.6×105 V/cm) and temperature (90-300 K). Time-of-flight and charge-collection measurements were also conducted, from which we concluded that the quantum efficiency for photocarrier generation varied less than 10% for all specimens in this temperature and electric-field range. In all cases, transport was dispersive, but we found no evidence for a field dependence in the dispersion itself. For the hydrogenated amorphous silicon specimen (a-Si:H) a field of 2×105 V/cm increased the electron drift mobility by a factor of 8 at 130 K. The characteristic electric field for the onset of nonlinear electron transport increased with Ge concentration and light soaking. In a-Si:H we found slight evidence for nonlinear transport of holes.

Original languageEnglish (US)
Pages (from-to)13957-13966
Number of pages10
JournalPhysical Review B
Volume43
Issue number17
DOIs
StatePublished - Jan 1 1991

ASJC Scopus subject areas

  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Nonlinear photocarrier drift in hydrogenated amorphous silicon-germanium alloys'. Together they form a unique fingerprint.

  • Cite this