New Properties of Holomorphic Sobolev–Hardy Spaces

William Gryc, Loredana Lanzani, Jue Xiong, Yuan Zhang

Research output: Contribution to journalArticlepeer-review

Abstract

We give new characterizations of the optimal data space for the Lp(bD,σ)-Neumann boundary value problem for the ∂¯ operator associated to a bounded, Lipschitz domain D⊂C. We show that the solution space is embedded (as a Banach space) in the Dirichlet space and that for p=2, the solution space is a reproducing kernel Hilbert space.

Original languageEnglish (US)
Article number13
JournalComplex Analysis and Operator Theory
Volume19
Issue number1
DOIs
StatePublished - Dec 2024

Keywords

  • Lipschitz domain
  • Neumann problem
  • Reproducing kernel Hilbert space
  • Sobolev–Hardy space
  • ∂¯

ASJC Scopus subject areas

  • Computational Mathematics
  • Computational Theory and Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'New Properties of Holomorphic Sobolev–Hardy Spaces'. Together they form a unique fingerprint.

Cite this