Nanotwin-governed toughening mechanism in hierarchically structured biological materials

Yoon Ah Shin, Sheng Yin, Xiaoyan Li, Subin Lee, Sungmin Moon, Jiwon Jeong, Minhyug Kwon, Seung Jo Yoo, Young Min Kim, Teng Zhang, Huajian Gao, Sang Ho Oh

Research output: Contribution to journalArticlepeer-review

138 Scopus citations

Abstract

As a natural biocomposite, Strombus gigas, commonly known as the giant pink queen conch shell, exhibits outstanding mechanical properties, especially a high fracture toughness. It is known that the basic building block of conch shell contains a high density of growth twins with average thickness of several nanometres, but their effects on the mechanical properties of the shell remain mysterious. Here we reveal a toughening mechanism governed by nanoscale twins in the conch shell. A combination of in situ fracture experiments inside a transmission electron microscope, large-scale atomistic simulations and finite element modelling show that the twin boundaries can effectively block crack propagation by inducing phase transformation and delocalization of deformation around the crack tip. This mechanism leads to an increase in fracture energy of the basic building block by one order of magnitude, and contributes significantly to that of the overall structure via structural hierarchy.

Original languageEnglish (US)
Article number10772
JournalNature Communications
Volume7
DOIs
StatePublished - Feb 17 2016
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Nanotwin-governed toughening mechanism in hierarchically structured biological materials'. Together they form a unique fingerprint.

Cite this