TY - JOUR
T1 - Myosin V1 regulates endocytosis of the cystic fibrosis transmembrane conductance regulator
AU - Swiatecka-Urban, Agnieszka
AU - Boydi, Cary
AU - Coutermarsh, Bonita
AU - Karlson, Katherine H.
AU - Barnaby, Roxanna
AU - Aschenbrenner, Laura
AU - Langford, George M.
AU - Hasson, Tama
AU - Stanton, Brace A.
PY - 2004/9/3
Y1 - 2004/9/3
N2 - The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-regulated Cl- channel expressed in the apical plasma membrane in fluid-transporting epithelia. Although CFTR is rapidly endocytosed from the apical membrane of polarized epithelial cells and efficiently recycled back to the plasma membrane, little is known about the molecular mechanisms regulating CFTR endocytosis and endocytic recycling. Myosin VI, an actin-dependent, minus-end directed mechano1 enzyme, has been implicated in clathrin-mediated endocytosis in epithelial cells. The goal of this study was to determine whether myosin VI regulates CFTR endocytosis. Endogenous, apical membrane CFTR in polarized human airway epithelial cells (Calu-3) formed a complex with myosin VI, the myosin VI adaptor protein Disabled 2 (Dab2), and clathrin. The tail domain of myosin VI, a dominant-negative recombinant fragment, displaced endogenous myosin VI from interacting with Dab2 and CFTR and increased the expression of CFTR in the plasma membrane by reducing CFTR endocytosis. However, the myosin VI tail fragment had no effect on the recycling of endocytosed CFTR or on fluid-phase endocytosis. CFTR endocytosis was decreased by cytochalasin D, an actin-filament depolymerizing agent. Taken together, these data indicate that myosin VI and Dab2 facilitate CFTR endocytosis by a mechanism that requires actin filaments.
AB - The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-regulated Cl- channel expressed in the apical plasma membrane in fluid-transporting epithelia. Although CFTR is rapidly endocytosed from the apical membrane of polarized epithelial cells and efficiently recycled back to the plasma membrane, little is known about the molecular mechanisms regulating CFTR endocytosis and endocytic recycling. Myosin VI, an actin-dependent, minus-end directed mechano1 enzyme, has been implicated in clathrin-mediated endocytosis in epithelial cells. The goal of this study was to determine whether myosin VI regulates CFTR endocytosis. Endogenous, apical membrane CFTR in polarized human airway epithelial cells (Calu-3) formed a complex with myosin VI, the myosin VI adaptor protein Disabled 2 (Dab2), and clathrin. The tail domain of myosin VI, a dominant-negative recombinant fragment, displaced endogenous myosin VI from interacting with Dab2 and CFTR and increased the expression of CFTR in the plasma membrane by reducing CFTR endocytosis. However, the myosin VI tail fragment had no effect on the recycling of endocytosed CFTR or on fluid-phase endocytosis. CFTR endocytosis was decreased by cytochalasin D, an actin-filament depolymerizing agent. Taken together, these data indicate that myosin VI and Dab2 facilitate CFTR endocytosis by a mechanism that requires actin filaments.
UR - http://www.scopus.com/inward/record.url?scp=4444379442&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4444379442&partnerID=8YFLogxK
U2 - 10.1074/jbc.M403141200
DO - 10.1074/jbc.M403141200
M3 - Article
C2 - 15247260
AN - SCOPUS:4444379442
SN - 0021-9258
VL - 279
SP - 38025
EP - 38031
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 36
ER -