Myofibril remodeling of human stem cell-derived cardiomyocytes responding to dynamic surface topography

Shiyang Sun, Sarah Moore, Chenyan Wang, Ariel Ash-Shakoor, James H Henderson, Zhen Ma

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Statement of Purpose: Alignment of cardiomyocytes (CMs) has been recognized to be critical for maintaining in vivo-mimicking structures and physiological functions of the cardiac muscles. The alignment will induce anisotropic cell shape, and further organize the myofibril structures and contractile apparatuses for efficient contractile functions. To achieve CM alignment in vitro, nanoscale or submicron topographic features on the biomaterial substrates have been shown to promote the orientation and elongation of CMs, enhance the contractile functions, and increase formation of focal adhesion. Although it has been well documented that surface topography can strongly influence cell alignment and myofibril organization, it is less understood the dynamic cellular response of CMs to the topographic surface and remodeling process of myofibril architecture. To track cytoskeletal remodeling process of the myofibrils and sarcomeres occurring with cell alignment, we developed a dynamic programmable biomaterial substrate based on shape memory polymer (SMP), which can transit from flat surfaces to nano-wrinkled surfaces with the cells grown on the top. We derived the CMs from human induced pluripotent stem cells (hiPSC-CMs), and successfully cultured them with high cell viability on the SMP coated with polyelectrolyte multilayers (PEM). Using this system, we were be able to investigate the sequential reorganization of different myofibril components of hiPSC-CMs resulted from the nano-wrinkle formation.

Original languageEnglish (US)
Title of host publicationSociety for Biomaterials Annual Meeting and Exposition 2019
Subtitle of host publicationThe Pinnacle of Biomaterials Innovation and Excellence - Transactions of the 42nd Annual Meeting
PublisherSociety for Biomaterials
Number of pages1
ISBN (Electronic)9781510883901
StatePublished - Jan 1 2019
Event42nd Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence - Seattle, United States
Duration: Apr 3 2019Apr 6 2019

Publication series

NameTransactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium
Volume40
ISSN (Print)1526-7547

Conference

Conference42nd Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence
CountryUnited States
CitySeattle
Period4/3/194/6/19

Fingerprint

Myofibrils
Surface topography
Stem cells
Cardiac Myocytes
Stem Cells
Induced Pluripotent Stem Cells
Biocompatible Materials
Shape memory effect
Biomaterials
Polymers
Cells
Substrates
Polyelectrolytes
Sarcomeres
Muscle
Focal Adhesions
Elongation
Cell Shape
Multilayers
Adhesion

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Biotechnology
  • Biomaterials
  • Materials Chemistry

Cite this

Sun, S., Moore, S., Wang, C., Ash-Shakoor, A., Henderson, J. H., & Ma, Z. (2019). Myofibril remodeling of human stem cell-derived cardiomyocytes responding to dynamic surface topography. In Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence - Transactions of the 42nd Annual Meeting (Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium; Vol. 40). Society for Biomaterials.

Myofibril remodeling of human stem cell-derived cardiomyocytes responding to dynamic surface topography. / Sun, Shiyang; Moore, Sarah; Wang, Chenyan; Ash-Shakoor, Ariel; Henderson, James H; Ma, Zhen.

Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence - Transactions of the 42nd Annual Meeting. Society for Biomaterials, 2019. (Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium; Vol. 40).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Sun, S, Moore, S, Wang, C, Ash-Shakoor, A, Henderson, JH & Ma, Z 2019, Myofibril remodeling of human stem cell-derived cardiomyocytes responding to dynamic surface topography. in Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence - Transactions of the 42nd Annual Meeting. Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium, vol. 40, Society for Biomaterials, 42nd Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence, Seattle, United States, 4/3/19.
Sun S, Moore S, Wang C, Ash-Shakoor A, Henderson JH, Ma Z. Myofibril remodeling of human stem cell-derived cardiomyocytes responding to dynamic surface topography. In Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence - Transactions of the 42nd Annual Meeting. Society for Biomaterials. 2019. (Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium).
Sun, Shiyang ; Moore, Sarah ; Wang, Chenyan ; Ash-Shakoor, Ariel ; Henderson, James H ; Ma, Zhen. / Myofibril remodeling of human stem cell-derived cardiomyocytes responding to dynamic surface topography. Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence - Transactions of the 42nd Annual Meeting. Society for Biomaterials, 2019. (Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium).
@inproceedings{f13f9d8ac8d74be79d6c0d1e9d5a3128,
title = "Myofibril remodeling of human stem cell-derived cardiomyocytes responding to dynamic surface topography",
abstract = "Statement of Purpose: Alignment of cardiomyocytes (CMs) has been recognized to be critical for maintaining in vivo-mimicking structures and physiological functions of the cardiac muscles. The alignment will induce anisotropic cell shape, and further organize the myofibril structures and contractile apparatuses for efficient contractile functions. To achieve CM alignment in vitro, nanoscale or submicron topographic features on the biomaterial substrates have been shown to promote the orientation and elongation of CMs, enhance the contractile functions, and increase formation of focal adhesion. Although it has been well documented that surface topography can strongly influence cell alignment and myofibril organization, it is less understood the dynamic cellular response of CMs to the topographic surface and remodeling process of myofibril architecture. To track cytoskeletal remodeling process of the myofibrils and sarcomeres occurring with cell alignment, we developed a dynamic programmable biomaterial substrate based on shape memory polymer (SMP), which can transit from flat surfaces to nano-wrinkled surfaces with the cells grown on the top. We derived the CMs from human induced pluripotent stem cells (hiPSC-CMs), and successfully cultured them with high cell viability on the SMP coated with polyelectrolyte multilayers (PEM). Using this system, we were be able to investigate the sequential reorganization of different myofibril components of hiPSC-CMs resulted from the nano-wrinkle formation.",
author = "Shiyang Sun and Sarah Moore and Chenyan Wang and Ariel Ash-Shakoor and Henderson, {James H} and Zhen Ma",
year = "2019",
month = "1",
day = "1",
language = "English (US)",
series = "Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium",
publisher = "Society for Biomaterials",
booktitle = "Society for Biomaterials Annual Meeting and Exposition 2019",

}

TY - GEN

T1 - Myofibril remodeling of human stem cell-derived cardiomyocytes responding to dynamic surface topography

AU - Sun, Shiyang

AU - Moore, Sarah

AU - Wang, Chenyan

AU - Ash-Shakoor, Ariel

AU - Henderson, James H

AU - Ma, Zhen

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Statement of Purpose: Alignment of cardiomyocytes (CMs) has been recognized to be critical for maintaining in vivo-mimicking structures and physiological functions of the cardiac muscles. The alignment will induce anisotropic cell shape, and further organize the myofibril structures and contractile apparatuses for efficient contractile functions. To achieve CM alignment in vitro, nanoscale or submicron topographic features on the biomaterial substrates have been shown to promote the orientation and elongation of CMs, enhance the contractile functions, and increase formation of focal adhesion. Although it has been well documented that surface topography can strongly influence cell alignment and myofibril organization, it is less understood the dynamic cellular response of CMs to the topographic surface and remodeling process of myofibril architecture. To track cytoskeletal remodeling process of the myofibrils and sarcomeres occurring with cell alignment, we developed a dynamic programmable biomaterial substrate based on shape memory polymer (SMP), which can transit from flat surfaces to nano-wrinkled surfaces with the cells grown on the top. We derived the CMs from human induced pluripotent stem cells (hiPSC-CMs), and successfully cultured them with high cell viability on the SMP coated with polyelectrolyte multilayers (PEM). Using this system, we were be able to investigate the sequential reorganization of different myofibril components of hiPSC-CMs resulted from the nano-wrinkle formation.

AB - Statement of Purpose: Alignment of cardiomyocytes (CMs) has been recognized to be critical for maintaining in vivo-mimicking structures and physiological functions of the cardiac muscles. The alignment will induce anisotropic cell shape, and further organize the myofibril structures and contractile apparatuses for efficient contractile functions. To achieve CM alignment in vitro, nanoscale or submicron topographic features on the biomaterial substrates have been shown to promote the orientation and elongation of CMs, enhance the contractile functions, and increase formation of focal adhesion. Although it has been well documented that surface topography can strongly influence cell alignment and myofibril organization, it is less understood the dynamic cellular response of CMs to the topographic surface and remodeling process of myofibril architecture. To track cytoskeletal remodeling process of the myofibrils and sarcomeres occurring with cell alignment, we developed a dynamic programmable biomaterial substrate based on shape memory polymer (SMP), which can transit from flat surfaces to nano-wrinkled surfaces with the cells grown on the top. We derived the CMs from human induced pluripotent stem cells (hiPSC-CMs), and successfully cultured them with high cell viability on the SMP coated with polyelectrolyte multilayers (PEM). Using this system, we were be able to investigate the sequential reorganization of different myofibril components of hiPSC-CMs resulted from the nano-wrinkle formation.

UR - http://www.scopus.com/inward/record.url?scp=85065417634&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85065417634&partnerID=8YFLogxK

M3 - Conference contribution

AN - SCOPUS:85065417634

T3 - Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium

BT - Society for Biomaterials Annual Meeting and Exposition 2019

PB - Society for Biomaterials

ER -