TY - GEN
T1 - Myofibril remodeling of human stem cell-derived cardiomyocytes responding to dynamic surface topography
AU - Sun, Shiyang
AU - Moore, Sarah
AU - Wang, Chenyan
AU - Ash-Shakoor, Ariel
AU - Henderson, James H.
AU - Ma, Zhen
N1 - Publisher Copyright:
© 2019 Omnipress - All rights reserved.
PY - 2019
Y1 - 2019
N2 - Statement of Purpose: Alignment of cardiomyocytes (CMs) has been recognized to be critical for maintaining in vivo-mimicking structures and physiological functions of the cardiac muscles. The alignment will induce anisotropic cell shape, and further organize the myofibril structures and contractile apparatuses for efficient contractile functions. To achieve CM alignment in vitro, nanoscale or submicron topographic features on the biomaterial substrates have been shown to promote the orientation and elongation of CMs, enhance the contractile functions, and increase formation of focal adhesion. Although it has been well documented that surface topography can strongly influence cell alignment and myofibril organization, it is less understood the dynamic cellular response of CMs to the topographic surface and remodeling process of myofibril architecture. To track cytoskeletal remodeling process of the myofibrils and sarcomeres occurring with cell alignment, we developed a dynamic programmable biomaterial substrate based on shape memory polymer (SMP), which can transit from flat surfaces to nano-wrinkled surfaces with the cells grown on the top. We derived the CMs from human induced pluripotent stem cells (hiPSC-CMs), and successfully cultured them with high cell viability on the SMP coated with polyelectrolyte multilayers (PEM). Using this system, we were be able to investigate the sequential reorganization of different myofibril components of hiPSC-CMs resulted from the nano-wrinkle formation.
AB - Statement of Purpose: Alignment of cardiomyocytes (CMs) has been recognized to be critical for maintaining in vivo-mimicking structures and physiological functions of the cardiac muscles. The alignment will induce anisotropic cell shape, and further organize the myofibril structures and contractile apparatuses for efficient contractile functions. To achieve CM alignment in vitro, nanoscale or submicron topographic features on the biomaterial substrates have been shown to promote the orientation and elongation of CMs, enhance the contractile functions, and increase formation of focal adhesion. Although it has been well documented that surface topography can strongly influence cell alignment and myofibril organization, it is less understood the dynamic cellular response of CMs to the topographic surface and remodeling process of myofibril architecture. To track cytoskeletal remodeling process of the myofibrils and sarcomeres occurring with cell alignment, we developed a dynamic programmable biomaterial substrate based on shape memory polymer (SMP), which can transit from flat surfaces to nano-wrinkled surfaces with the cells grown on the top. We derived the CMs from human induced pluripotent stem cells (hiPSC-CMs), and successfully cultured them with high cell viability on the SMP coated with polyelectrolyte multilayers (PEM). Using this system, we were be able to investigate the sequential reorganization of different myofibril components of hiPSC-CMs resulted from the nano-wrinkle formation.
UR - http://www.scopus.com/inward/record.url?scp=85065417634&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85065417634&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85065417634
T3 - Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium
SP - 129
BT - Society for Biomaterials Annual Meeting and Exposition 2019
PB - Society for Biomaterials
T2 - 42nd Society for Biomaterials Annual Meeting and Exposition 2019: The Pinnacle of Biomaterials Innovation and Excellence
Y2 - 3 April 2019 through 6 April 2019
ER -