Abstract
The rhythmic movement of the microtubular axostyle in the termite flagellate, Pyrsonympha vertens, was analyzed with polarization and electron microscopy. The protozoan axostyle is birefringent as a result of the semi-crystalline alignment of ~2,000 microtubules. The birefringence of the organelle permits analysis of the beat pattern in vivo. Modifications of the beat pattern were achieved with visible and UV microbeam irradiation. The beating axostyle is helically twisted and has two principal movements, one resembling ciliary and the other flagellar beating. The anterior portion of the beating axostyle has effective and recovery phases with each beat thereby simulating the flexural motion of a beating cilium. Undulations develop from the flexural flipping motion of the anterior segment and travel along the axostyle like flagellar waves. The shape of the waves differs from that of flagellar waves, however, and are described as sawtooth waves. The propagating sawtooth waves contain a sharp bend, ~3 µm in length, made up of two opposing flexures followed by a straight helical segment ~23 µm long. The average wavelength is ~25 µm, and three to four sawtooth waves travel along the axostyle at one time. The bends are nearly planar and can travel in either direction along the axostyle with equal velocity. At temperatures between 5° and 30°C, one sees a proportionate increase or decrease in wave propagation velocity as the temperature is raised or lowered. Beating stops below 5°C but will resume if the preparation is warmed. A microbeam of visible light shone on a small segment of the axostyle causes the typical sawtooth waves to transform into short sine-like waves that accumulate in the area irradiated. Waves entering the affected region appear to stimulate waves already accumulated there to move, and waves that emerge take on the normal sawtooth wave pattern. The effective wavelengths of visible light capable of modifying the wave pattern is in the blue region of the spectrum. The axostyle is severed when irradiated with an intense microbeam of UV light. Short segments of axostyle produced by severing it at two places with a UV microbeam can curl upon themselves into shapes resembling lockwashers. We propose that the sawtooth waves in the axostyle of P. vertens are generated by interrow cross-bridges which are active in the straight regions.
Original language | English (US) |
---|---|
Title of host publication | Collected Works of Shinya Inoue |
Subtitle of host publication | Microscopes, Living Cells, and Dynamic Molecules |
Publisher | World Scientific Publishing Co. |
Pages | 417-436 |
Number of pages | 20 |
ISBN (Electronic) | 9789812790866 |
ISBN (Print) | 9812703888, 9789812703880 |
DOIs | |
State | Published - Jan 1 2008 |
Externally published | Yes |
Keywords
- Axostyle
- Birefringence
- Microtubules
- Motility
- Pyrsonympha
- Sawtooth wave
ASJC Scopus subject areas
- General Biochemistry, Genetics and Molecular Biology