Mission-Aware Spatio-Temporal Deep Learning Model for UAS Instantaneous Density Prediction

Ziyi Zhao, Zhao Jin, Wentian Bai, Wentan Bai, Carlos Caicedo, M. Cenk Gursoy, Qinru Qiu

Research output: Chapter in Book/Entry/PoemConference contribution

Abstract

The number of daily sUAS operations in uncontrolled low altitude airspace is expected to reach into the millions in a few years. Therefore, UAS density prediction has become an emerging and challenging problem. In this paper, a deep learning-based UAS instantaneous density prediction model is presented. The model takes two types of data as input: 1) the historical density generated from the historical data, and 2) the future sUAS mission information. The architecture of our model contains four components: Historical Density Formulation module, UAS Mission Translation module, Mission Feature Extraction module, and Density Map Projection module. The training and testing data are generated by a python based simulator which is inspired by the multi-agent air traffic resource usage simulator (MATRUS) framework. The quality of prediction is measured by the correlation score and the Area Under the Receiver Operating Characteristics (AUROC) between the predicted value and simulated value. The experimental results demonstrate outstanding performance of the deep learning-based UAS density predictor. Compared to the baseline models, for simplified traffic scenario where no-fly zones and safe distance among sUASs are not considered, our model improves the prediction accuracy by up to 15.2% and its correlation score reaches 0.947. In a more realistic scenario, where the no-fly zone avoidance and the safe distance among sUASs are maintained using A∗ routing algorithm, our model can still achieve 0.822 correlation score. Meanwhile, the AUROC can reach 0.951 for the hot spot prediction.

Original languageEnglish (US)
Title of host publication2020 International Joint Conference on Neural Networks, IJCNN 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728169262
DOIs
StatePublished - Jul 2020
Event2020 International Joint Conference on Neural Networks, IJCNN 2020 - Virtual, Glasgow, United Kingdom
Duration: Jul 19 2020Jul 24 2020

Publication series

NameProceedings of the International Joint Conference on Neural Networks

Conference

Conference2020 International Joint Conference on Neural Networks, IJCNN 2020
Country/TerritoryUnited Kingdom
CityVirtual, Glasgow
Period7/19/207/24/20

Keywords

  • UAS
  • instantaneous density prediction
  • mission aware
  • spatio-temporal model

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Mission-Aware Spatio-Temporal Deep Learning Model for UAS Instantaneous Density Prediction'. Together they form a unique fingerprint.

Cite this