Abstract
Prior work suggests spatial parameters (e.g., landscape position, distance to nearest gas well) can be used to estimate the amount of dissolved methane in domestic drinking water wells overlying the deep Marcellus Shale. New York (NY) provides an opportunity to investigate methane occurrence prior to expansion of high-volume hydraulic fracturing because unconventional gas production is currently banned in the state. We sampled domestic groundwater wells for methane in 2013 (n = 137) across five counties of NY bordering Pennsylvania, and then resampled a subset of those wells in 2014 for methane concentrations and δ13C-CH4 and δD-CH4. The majority of waters from wells sampled (77%) had low concentrations of methane (<0.1 mg/L), and only 5% (n = 7) had actionable levels of methane (>10 mg/L). Dissolved methane concentrations did not change as a function of proximity to existing vertical gas wells, nor other parameters indicating subsurface planes of weakness (i.e., faults or lineaments). Methane levels were significantly higher in wells closer to hydrography flow lines, and most strongly correlated to Na-HCO3 water type. The distribution of methane between Ca-HCO3 (n = 76) and Na-HCO3 (n = 23) water types significantly differed (p < 0.01), with median methane concentrations of 0.002 and 0.78 mg/L, respectively. Combined classification of sampled waters based on the dominant water cation, well topographic position, and geologic unit of well completion effectively identified wells with a greater than 50% probability of having methane concentrations exceeding 1 mg/L. Such classification schemes may be useful as a screening tool to assess natural versus gas production-related sources of methane in domestic wells.
Original language | English (US) |
---|---|
Pages (from-to) | 206-226 |
Number of pages | 21 |
Journal | Water Resources Research |
Volume | 52 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1 2016 |
Keywords
- contamination
- groundwater
- shale gas
ASJC Scopus subject areas
- Water Science and Technology