Metasurface-Enabled Remote Quantum Interference

Pankaj K. Jha, Xingjie Ni, Chihhui Wu, Yuan Wang, Xiang Zhang

Research output: Contribution to journalArticlepeer-review

134 Scopus citations

Abstract

An anisotropic quantum vacuum (AQV) opens novel pathways for controlling light-matter interaction in quantum optics, condensed matter physics, etc. Here, we theoretically demonstrate a strong AQV over macroscopic distances enabled by a judiciously designed array of subwavelength-scale nanoantennas - a metasurface. We harness the phase-control ability and the polarization-dependent response of the metasurface to achieve strong anisotropy in the decay rate of a quantum emitter located over distances of hundreds of wavelengths. Such an AQV induces quantum interference among radiative decay channels in an atom with orthogonal transitions. Quantum vacuum engineering with metasurfaces holds promise for exploring new paradigms of long-range light-matter interaction for atom optics, solid-state quantum optics, quantum information processing, etc.

Original languageEnglish (US)
Article number025501
JournalPhysical Review Letters
Volume115
Issue number2
DOIs
StatePublished - Jul 6 2015
Externally publishedYes

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Metasurface-Enabled Remote Quantum Interference'. Together they form a unique fingerprint.

Cite this