TY - GEN
T1 - Mechanical Characterization of Epoxy Resin Manufactured Using Frontal Polymerization
AU - Tarafdar, Amirreza
AU - Woodbury, Cameron
AU - Naderi, Ali
AU - Wang, Xinlu
AU - Lin, Wenhua
AU - Hosein, Ian D.
AU - Wang, Yeqing
N1 - Publisher Copyright:
© 2023 by DEStech Publications, Inc. and American Society for Composites. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Frontal polymerization (FP) is a promising alternative manufacturing method for thermoset-based fiber-reinforced polymer composites (FRP) in comparison with the traditional autoclave/oven-curing method, due to its rapid curing process, low energy consumption, and low cost. Optimizing the weight contents of initiators relative to the resin's mass is needed to adjust the mechanical properties of FRPs in industrial applications. This study investigates the effect of varying the photo-initiator (PI) weight content on tensile properties and the frontal polymerization characteristics, including the front velocity, front temperature, and degree of cure, in the FP process of the epoxy resin. Specifically, a dual-initiator system, including PI and thermal-initiator (TI), is used to initiate the polymerization process by ultraviolent (UV) light. The weight content of the TI is fixed at 1 w%, and the relative PI concentration is varied from 0.2 w% to 0.5 wt%. Results show that increasing the PI amount from 0.2 wt% to 0.3 wt% significantly improves the front velocity and the degree of cure by about two times. Increasing the PI content from 0.3 wt% to 0.4 wt% results in 15% and 26% higher degree of cure and front velocity, respectively. Moreover, due to the different front velocity in the top and bottom regions of the specimen, the specimens with 0.4 wt% PI exhibited a curved shape. The specimen with 0.5 wt% PI is thermally degraded and foamed. By comparing tensile properties, it is found that increasing the PI concentration from 0.2 wt% to 0.3 wt% improves the tensile strength and Young's modulus by 3.91% and 7%, respectively, while the tensile strength and the Young's modulus of frontal polymerized specimens are on average 8% and 14% higher than traditionally oven-cured ones, respectively.
AB - Frontal polymerization (FP) is a promising alternative manufacturing method for thermoset-based fiber-reinforced polymer composites (FRP) in comparison with the traditional autoclave/oven-curing method, due to its rapid curing process, low energy consumption, and low cost. Optimizing the weight contents of initiators relative to the resin's mass is needed to adjust the mechanical properties of FRPs in industrial applications. This study investigates the effect of varying the photo-initiator (PI) weight content on tensile properties and the frontal polymerization characteristics, including the front velocity, front temperature, and degree of cure, in the FP process of the epoxy resin. Specifically, a dual-initiator system, including PI and thermal-initiator (TI), is used to initiate the polymerization process by ultraviolent (UV) light. The weight content of the TI is fixed at 1 w%, and the relative PI concentration is varied from 0.2 w% to 0.5 wt%. Results show that increasing the PI amount from 0.2 wt% to 0.3 wt% significantly improves the front velocity and the degree of cure by about two times. Increasing the PI content from 0.3 wt% to 0.4 wt% results in 15% and 26% higher degree of cure and front velocity, respectively. Moreover, due to the different front velocity in the top and bottom regions of the specimen, the specimens with 0.4 wt% PI exhibited a curved shape. The specimen with 0.5 wt% PI is thermally degraded and foamed. By comparing tensile properties, it is found that increasing the PI concentration from 0.2 wt% to 0.3 wt% improves the tensile strength and Young's modulus by 3.91% and 7%, respectively, while the tensile strength and the Young's modulus of frontal polymerized specimens are on average 8% and 14% higher than traditionally oven-cured ones, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85178601238&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85178601238&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85178601238
T3 - Proceedings of the American Society for Composites - 38th Technical Conference, ASC 2023
SP - 1104
EP - 1115
BT - Proceedings of the American Society for Composites - 38th Technical Conference, ASC 2023
A2 - Maiaru, Marianna
A2 - Odegard, Gregory
A2 - Bednarcyk, Brett
A2 - Pineda, Evan
PB - DEStech Publications
T2 - 38th Technical Conference of the American Society for Composites, ASC 2023
Y2 - 18 September 2023 through 20 September 2023
ER -