Measurement of the longitudinal diffusion of ionization electrons in the MicroBooNE detector

P. Abratenko, R. An, J. Anthony, J. Asaadi, A. Ashkenazi, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, V. Basque, L. Bathe-Peters, O. Benevides Rodrigues, S. Berkman, A. Bhanderi, A. Bhat, M. Bishai, A. Blake, T. Bolton, L. Camilleri, D. CaratelliI. Caro Terrazas, R. Castillo Fernandez, F. Cavanna, G. Cerati, Y. Chen, E. Church, D. Cianci, J. M. Conrad, M. Convery, L. Cooper-Troendle, J. I. Crespo-Anadón, M. Del Tutto, S. R. Dennis, D. Devitt, R. Diurba, R. Dorrill, K. Duffy, S. Dytman, B. Eberly, A. Ereditato, J. J. Evans, R. Fine, G. A. Fiorentini Aguirre, R. S. Fitzpatrick, B. T. Fleming, N. Foppiani, D. Franco, A. P. Furmanski, D. Garcia-Gamez, S. Gardiner, G. Ge, S. Gollapinni, O. Goodwin, E. Gramellini, P. Green, H. Greenlee, W. Gu, R. Guenette, P. Guzowski, L. Hagaman, E. Hall, P. Hamilton, O. Hen, G. A. Horton-Smith, A. Hourlier, R. Itay, C. James, X. Ji, L. Jiang, J. H. Jo, R. A. Johnson, Y. J. Jwa, N. Kamp, N. Kaneshige, G. Karagiorgi, W. Ketchum, M. Kirby, T. Kobilarcik, I. Kreslo, R. Lazur, I. Lepetic, K. Li, Y. Li, K. Lin, A. Lister, B. R. Littlejohn, W. C. Louis, X. Luo, K. Manivannan, C. Mariani, D. Marsden, J. Marshall, D. A. Martinez Caicedo, K. Mason, A. Mastbaum, N. McConkey, V. Meddage, T. Mettler, K. Miller, J. Mills, K. Mistry, A. Mogan, T. Mohayai, J. Moon, M. Mooney, A. F. Moor, C. D. Moore, L. Mora Lepin, J. Mousseau, M. Murphy, D. Naples, A. Navrer-Agasson, R. K. Neely, J. Nowak, M. Nunes, O. Palamara, V. Paolone, A. Papadopoulou, V. Papavassiliou, S. F. Pate, A. Paudel, Z. Pavlovic, E. Piasetzky, I. D. Ponce-Pinto, S. Prince, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, M. Reggiani-Guzzo, L. Ren, L. C.J. Rice, L. Rochester, J. Rodriguez Rondon, H. E. Rogers, M. Rosenberg, M. Ross-Lonergan, G. Scanavini, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, R. Sharankova, J. Sinclair, A. Smith, E. L. Snider, M. Soderberg, S. Söldner-Rembold, P. Spentzouris, J. Spitz, M. Stancari, J. St. John, T. Strauss, K. Sutton, S. Sword-Fehlberg, A. M. Szelc, N. Tagg, W. Tang, K. Terao, C. Thorpe, D. Totani, M. Toups, Y. T. Tsai, M. A. Uchida, T. Usher, W. Van De Pontseele, B. Viren, M. Weber, H. Wei, Z. Williams, S. Wolbers, T. Wongjirad, M. Wospakrik, N. Wright, W. Wu, E. Yandel, T. Yang, G. Yarbrough, L. E. Yates, G. P. Zeller, J. Zennamo, C. Zhang

Research output: Contribution to journalArticlepeer-review

Abstract

Accurate knowledge of electron transport properties is vital to understanding the information provided by liquid argon time projection chambers (LArTPCs). Ionization electron drift-lifetime, local electric field distortions caused by positive ion accumulation, and electron diffusion can all significantly impact the measured signal waveforms. This paper presents a measurement of the effective longitudinal electron diffusion coefficient, DL, in MicroBooNE at the nominal electric field strength of 273.9 V/cm. Historically, this measurement has been made in LArTPC prototype detectors. This represents the first measurement in a large-scale (85 tonne active volume) LArTPC operating in a neutrino beam. This is the largest dataset ever used for this measurement. Using a sample of ∼70,000 through-going cosmic ray muon tracks tagged with MicroBooNE's cosmic ray tagger system, we measure DL = 3.74+0.28-0.29 cm2/s.

Original languageEnglish (US)
Article numberP09025
JournalJournal of Instrumentation
Volume16
Issue number9
DOIs
StatePublished - Sep 2021

Keywords

  • Charge transport and multiplication in liquid media
  • Noble liquid detectors (scintillation, ionization, double-phase)
  • Time projection Chambers (TPC)

ASJC Scopus subject areas

  • Mathematical Physics
  • Instrumentation

Fingerprint

Dive into the research topics of 'Measurement of the longitudinal diffusion of ionization electrons in the MicroBooNE detector'. Together they form a unique fingerprint.

Cite this