Abstract
Accurate knowledge of electron transport properties is vital to understanding the information provided by liquid argon time projection chambers (LArTPCs). Ionization electron drift-lifetime, local electric field distortions caused by positive ion accumulation, and electron diffusion can all significantly impact the measured signal waveforms. This paper presents a measurement of the effective longitudinal electron diffusion coefficient, DL, in MicroBooNE at the nominal electric field strength of 273.9 V/cm. Historically, this measurement has been made in LArTPC prototype detectors. This represents the first measurement in a large-scale (85 tonne active volume) LArTPC operating in a neutrino beam. This is the largest dataset ever used for this measurement. Using a sample of ∼70,000 through-going cosmic ray muon tracks tagged with MicroBooNE's cosmic ray tagger system, we measure DL = 3.74+0.28-0.29 cm2/s.
Original language | English (US) |
---|---|
Article number | P09025 |
Journal | Journal of Instrumentation |
Volume | 16 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2021 |
Keywords
- Charge transport and multiplication in liquid media
- Noble liquid detectors (scintillation, ionization, double-phase)
- Time projection Chambers (TPC)
ASJC Scopus subject areas
- Mathematical Physics
- Instrumentation
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Measurement of the longitudinal diffusion of ionization electrons in the MicroBooNE detector'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Measurement of the longitudinal diffusion of ionization electrons in the MicroBooNE detector. / Abratenko, P.; An, R.; Anthony, J.; Asaadi, J.; Ashkenazi, A.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Basque, V.; Bathe-Peters, L.; Benevides Rodrigues, O.; Berkman, S.; Bhanderi, A.; Bhat, A.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Caro Terrazas, I.; Castillo Fernandez, R.; Cavanna, F.; Cerati, G.; Chen, Y.; Church, E.; Cianci, D.; Conrad, J. M.; Convery, M.; Cooper-Troendle, L.; Crespo-Anadón, J. I.; Del Tutto, M.; Dennis, S. R.; Devitt, D.; Diurba, R.; Dorrill, R.; Duffy, K.; Dytman, S.; Eberly, B.; Ereditato, A.; Evans, J. J.; Fine, R.; Fiorentini Aguirre, G. A.; Fitzpatrick, R. S.; Fleming, B. T.; Foppiani, N.; Franco, D.; Furmanski, A. P.; Garcia-Gamez, D.; Gardiner, S.; Ge, G.; Gollapinni, S.; Goodwin, O.; Gramellini, E.; Green, P.; Greenlee, H.; Gu, W.; Guenette, R.; Guzowski, P.; Hagaman, L.; Hall, E.; Hamilton, P.; Hen, O.; Horton-Smith, G. A.; Hourlier, A.; Itay, R.; James, C.; Ji, X.; Jiang, L.; Jo, J. H.; Johnson, R. A.; Jwa, Y. J.; Kamp, N.; Kaneshige, N.; Karagiorgi, G.; Ketchum, W.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Lazur, R.; Lepetic, I.; Li, K.; Li, Y.; Lin, K.; Lister, A.; Littlejohn, B. R.; Louis, W. C.; Luo, X.; Manivannan, K.; Mariani, C.; Marsden, D.; Marshall, J.; Martinez Caicedo, D. A.; Mason, K.; Mastbaum, A.; McConkey, N.; Meddage, V.; Mettler, T.; Miller, K.; Mills, J.; Mistry, K.; Mogan, A.; Mohayai, T.; Moon, J.; Mooney, M.; Moor, A. F.; Moore, C. D.; Mora Lepin, L.; Mousseau, J.; Murphy, M.; Naples, D.; Navrer-Agasson, A.; Neely, R. K.; Nowak, J.; Nunes, M.; Palamara, O.; Paolone, V.; Papadopoulou, A.; Papavassiliou, V.; Pate, S. F.; Paudel, A.; Pavlovic, Z.; Piasetzky, E.; Ponce-Pinto, I. D.; Prince, S.; Qian, X.; Raaf, J. L.; Radeka, V.; Rafique, A.; Reggiani-Guzzo, M.; Ren, L.; Rice, L. C.J.; Rochester, L.; Rodriguez Rondon, J.; Rogers, H. E.; Rosenberg, M.; Ross-Lonergan, M.; Scanavini, G.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sharankova, R.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Spentzouris, P.; Spitz, J.; Stancari, M.; St. John, J.; Strauss, T.; Sutton, K.; Sword-Fehlberg, S.; Szelc, A. M.; Tagg, N.; Tang, W.; Terao, K.; Thorpe, C.; Totani, D.; Toups, M.; Tsai, Y. T.; Uchida, M. A.; Usher, T.; Van De Pontseele, W.; Viren, B.; Weber, M.; Wei, H.; Williams, Z.; Wolbers, S.; Wongjirad, T.; Wospakrik, M.; Wright, N.; Wu, W.; Yandel, E.; Yang, T.; Yarbrough, G.; Yates, L. E.; Zeller, G. P.; Zennamo, J.; Zhang, C.
In: Journal of Instrumentation, Vol. 16, No. 9, P09025, 09.2021.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Measurement of the longitudinal diffusion of ionization electrons in the MicroBooNE detector
AU - Abratenko, P.
AU - An, R.
AU - Anthony, J.
AU - Asaadi, J.
AU - Ashkenazi, A.
AU - Balasubramanian, S.
AU - Baller, B.
AU - Barnes, C.
AU - Barr, G.
AU - Basque, V.
AU - Bathe-Peters, L.
AU - Benevides Rodrigues, O.
AU - Berkman, S.
AU - Bhanderi, A.
AU - Bhat, A.
AU - Bishai, M.
AU - Blake, A.
AU - Bolton, T.
AU - Camilleri, L.
AU - Caratelli, D.
AU - Caro Terrazas, I.
AU - Castillo Fernandez, R.
AU - Cavanna, F.
AU - Cerati, G.
AU - Chen, Y.
AU - Church, E.
AU - Cianci, D.
AU - Conrad, J. M.
AU - Convery, M.
AU - Cooper-Troendle, L.
AU - Crespo-Anadón, J. I.
AU - Del Tutto, M.
AU - Dennis, S. R.
AU - Devitt, D.
AU - Diurba, R.
AU - Dorrill, R.
AU - Duffy, K.
AU - Dytman, S.
AU - Eberly, B.
AU - Ereditato, A.
AU - Evans, J. J.
AU - Fine, R.
AU - Fiorentini Aguirre, G. A.
AU - Fitzpatrick, R. S.
AU - Fleming, B. T.
AU - Foppiani, N.
AU - Franco, D.
AU - Furmanski, A. P.
AU - Garcia-Gamez, D.
AU - Gardiner, S.
AU - Ge, G.
AU - Gollapinni, S.
AU - Goodwin, O.
AU - Gramellini, E.
AU - Green, P.
AU - Greenlee, H.
AU - Gu, W.
AU - Guenette, R.
AU - Guzowski, P.
AU - Hagaman, L.
AU - Hall, E.
AU - Hamilton, P.
AU - Hen, O.
AU - Horton-Smith, G. A.
AU - Hourlier, A.
AU - Itay, R.
AU - James, C.
AU - Ji, X.
AU - Jiang, L.
AU - Jo, J. H.
AU - Johnson, R. A.
AU - Jwa, Y. J.
AU - Kamp, N.
AU - Kaneshige, N.
AU - Karagiorgi, G.
AU - Ketchum, W.
AU - Kirby, M.
AU - Kobilarcik, T.
AU - Kreslo, I.
AU - Lazur, R.
AU - Lepetic, I.
AU - Li, K.
AU - Li, Y.
AU - Lin, K.
AU - Lister, A.
AU - Littlejohn, B. R.
AU - Louis, W. C.
AU - Luo, X.
AU - Manivannan, K.
AU - Mariani, C.
AU - Marsden, D.
AU - Marshall, J.
AU - Martinez Caicedo, D. A.
AU - Mason, K.
AU - Mastbaum, A.
AU - McConkey, N.
AU - Meddage, V.
AU - Mettler, T.
AU - Miller, K.
AU - Mills, J.
AU - Mistry, K.
AU - Mogan, A.
AU - Mohayai, T.
AU - Moon, J.
AU - Mooney, M.
AU - Moor, A. F.
AU - Moore, C. D.
AU - Mora Lepin, L.
AU - Mousseau, J.
AU - Murphy, M.
AU - Naples, D.
AU - Navrer-Agasson, A.
AU - Neely, R. K.
AU - Nowak, J.
AU - Nunes, M.
AU - Palamara, O.
AU - Paolone, V.
AU - Papadopoulou, A.
AU - Papavassiliou, V.
AU - Pate, S. F.
AU - Paudel, A.
AU - Pavlovic, Z.
AU - Piasetzky, E.
AU - Ponce-Pinto, I. D.
AU - Prince, S.
AU - Qian, X.
AU - Raaf, J. L.
AU - Radeka, V.
AU - Rafique, A.
AU - Reggiani-Guzzo, M.
AU - Ren, L.
AU - Rice, L. C.J.
AU - Rochester, L.
AU - Rodriguez Rondon, J.
AU - Rogers, H. E.
AU - Rosenberg, M.
AU - Ross-Lonergan, M.
AU - Scanavini, G.
AU - Schmitz, D. W.
AU - Schukraft, A.
AU - Seligman, W.
AU - Shaevitz, M. H.
AU - Sharankova, R.
AU - Sinclair, J.
AU - Smith, A.
AU - Snider, E. L.
AU - Soderberg, M.
AU - Söldner-Rembold, S.
AU - Spentzouris, P.
AU - Spitz, J.
AU - Stancari, M.
AU - St. John, J.
AU - Strauss, T.
AU - Sutton, K.
AU - Sword-Fehlberg, S.
AU - Szelc, A. M.
AU - Tagg, N.
AU - Tang, W.
AU - Terao, K.
AU - Thorpe, C.
AU - Totani, D.
AU - Toups, M.
AU - Tsai, Y. T.
AU - Uchida, M. A.
AU - Usher, T.
AU - Van De Pontseele, W.
AU - Viren, B.
AU - Weber, M.
AU - Wei, H.
AU - Williams, Z.
AU - Wolbers, S.
AU - Wongjirad, T.
AU - Wospakrik, M.
AU - Wright, N.
AU - Wu, W.
AU - Yandel, E.
AU - Yang, T.
AU - Yarbrough, G.
AU - Yates, L. E.
AU - Zeller, G. P.
AU - Zennamo, J.
AU - Zhang, C.
N1 - Publisher Copyright: © 2021 The Author(s).
PY - 2021/9
Y1 - 2021/9
N2 - Accurate knowledge of electron transport properties is vital to understanding the information provided by liquid argon time projection chambers (LArTPCs). Ionization electron drift-lifetime, local electric field distortions caused by positive ion accumulation, and electron diffusion can all significantly impact the measured signal waveforms. This paper presents a measurement of the effective longitudinal electron diffusion coefficient, DL, in MicroBooNE at the nominal electric field strength of 273.9 V/cm. Historically, this measurement has been made in LArTPC prototype detectors. This represents the first measurement in a large-scale (85 tonne active volume) LArTPC operating in a neutrino beam. This is the largest dataset ever used for this measurement. Using a sample of ∼70,000 through-going cosmic ray muon tracks tagged with MicroBooNE's cosmic ray tagger system, we measure DL = 3.74+0.28-0.29 cm2/s.
AB - Accurate knowledge of electron transport properties is vital to understanding the information provided by liquid argon time projection chambers (LArTPCs). Ionization electron drift-lifetime, local electric field distortions caused by positive ion accumulation, and electron diffusion can all significantly impact the measured signal waveforms. This paper presents a measurement of the effective longitudinal electron diffusion coefficient, DL, in MicroBooNE at the nominal electric field strength of 273.9 V/cm. Historically, this measurement has been made in LArTPC prototype detectors. This represents the first measurement in a large-scale (85 tonne active volume) LArTPC operating in a neutrino beam. This is the largest dataset ever used for this measurement. Using a sample of ∼70,000 through-going cosmic ray muon tracks tagged with MicroBooNE's cosmic ray tagger system, we measure DL = 3.74+0.28-0.29 cm2/s.
KW - Charge transport and multiplication in liquid media
KW - Noble liquid detectors (scintillation, ionization, double-phase)
KW - Time projection Chambers (TPC)
UR - http://www.scopus.com/inward/record.url?scp=85115948051&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85115948051&partnerID=8YFLogxK
U2 - 10.1088/1748-0221/16/09/P09025
DO - 10.1088/1748-0221/16/09/P09025
M3 - Article
AN - SCOPUS:85115948051
VL - 16
JO - Journal of Instrumentation
JF - Journal of Instrumentation
SN - 1748-0221
IS - 9
M1 - P09025
ER -