Measurement of the CKM angle γ using B ± → DK ± with D → K S 0 π + π , K S 0 K + K decays

The Lhcb Collaboration

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

A binned Dalitz plot analysis of B± → DK± decays, with D → KS 0π+π and D → KS 0K+K, is used to perform a measurement of the CP-violating observables x± and y±, which are sensitive to the Cabibbo-Kobayashi-Maskawa angle γ. The analysis is performed without assuming any D decay model, through the use of information on the strong-phase variation over the Dalitz plot from the CLEO collaboration. Using a sample of proton-proton collision data collected with the LHCb experiment in 2015 and 2016, and corresponding to an integrated luminosity of 2.0 fb−1, the values of the CP violation parameters are found to be x = (9.0 ± 1.7 ± 0.7 ± 0.4) × 10−2, y = (2.1 ± 2.2 ± 0.5 ± 1.1) × 10−2, x+ = (−7.7 ± 1.9 ± 0.7 ± 0.4) × 10−2, and y+ = (−1.0 ± 1.9 ± 0.4 ± 0.9) × 10−2. The first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty (on the strong-phase measurements. These values are used to obtain γ = (87− 12 + 11), rB = 0.086− 0.014 + 0.013, and δB = (101±11)°, where rB is the ratio between the suppressed and favoured B-decay amplitudes and δB is the corresponding strong-interaction phase difference. This measurement is combined with the result obtained using 2011 and 2012 data collected with the LHCb experiment, to give γ = (80− 9 + 10), rB = 0.080 ± 0.011, and δB = (110 ± 10)°.[Figure not available: see fulltext.]

Original languageEnglish (US)
Article number176
JournalJournal of High Energy Physics
Volume2018
Issue number8
DOIs
StatePublished - Aug 1 2018

Fingerprint

decay
plots
protons
CP violation
luminosity
collisions

Keywords

  • B physics
  • CKM angle gamma
  • CP violation
  • Flavor physics
  • Hadron-Hadron scattering (experiments)

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Cite this

Measurement of the CKM angle γ using B ± → DK ± with D → K S 0 π + π , K S 0 K + K decays. / The Lhcb Collaboration.

In: Journal of High Energy Physics, Vol. 2018, No. 8, 176, 01.08.2018.

Research output: Contribution to journalArticle

@article{f691a07d3c8946d5988918a7c7de694d,
title = "Measurement of the CKM angle γ using B ± → DK ± with D → K S 0 π + π −, K S 0 K + K − decays",
abstract = "A binned Dalitz plot analysis of B± → DK± decays, with D → KS 0π+π− and D → KS 0K+K−, is used to perform a measurement of the CP-violating observables x± and y±, which are sensitive to the Cabibbo-Kobayashi-Maskawa angle γ. The analysis is performed without assuming any D decay model, through the use of information on the strong-phase variation over the Dalitz plot from the CLEO collaboration. Using a sample of proton-proton collision data collected with the LHCb experiment in 2015 and 2016, and corresponding to an integrated luminosity of 2.0 fb−1, the values of the CP violation parameters are found to be x− = (9.0 ± 1.7 ± 0.7 ± 0.4) × 10−2, y− = (2.1 ± 2.2 ± 0.5 ± 1.1) × 10−2, x+ = (−7.7 ± 1.9 ± 0.7 ± 0.4) × 10−2, and y+ = (−1.0 ± 1.9 ± 0.4 ± 0.9) × 10−2. The first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty (on the strong-phase measurements. These values are used to obtain γ = (87− 12 + 11)∘, rB = 0.086− 0.014 + 0.013, and δB = (101±11)°, where rB is the ratio between the suppressed and favoured B-decay amplitudes and δB is the corresponding strong-interaction phase difference. This measurement is combined with the result obtained using 2011 and 2012 data collected with the LHCb experiment, to give γ = (80− 9 + 10)∘, rB = 0.080 ± 0.011, and δB = (110 ± 10)°.[Figure not available: see fulltext.]",
keywords = "B physics, CKM angle gamma, CP violation, Flavor physics, Hadron-Hadron scattering (experiments)",
author = "{The Lhcb Collaboration} and R. Aaij and B. Adeva and M. Adinolfi and Aidala, {C. A.} and Z. Ajaltouni and S. Akar and P. Albicocco and J. Albrecht and F. Alessio and M. Alexander and {Alfonso Albero}, A. and S. Ali and G. Alkhazov and {Alvarez Cartelle}, P. and Alves, {A. A.} and S. Amato and S. Amerio and Y. Amhis and L. An and L. Anderlini and G. Andreassi and M. Andreotti and Andrews, {J. E.} and Appleby, {R. B.} and F. Archilli and P. d’Argent and {Arnau Romeu}, J. and A. Artamonov and Marina Artuso and K. Arzymatov and E. Aslanides and M. Atzeni and S. Bachmann and Back, {J. J.} and S. Baker and V. Balagura and W. Baldini and A. Baranov and Barlow, {R. J.} and S. Barsuk and W. Barter and F. Baryshnikov and V. Batozskaya and B. Batsukh and V. Battista and A. Bay and Blusk, {Steven Roy} and Matthew Rudolph and Tomasz Skwarnicki and Sheldon Stone",
year = "2018",
month = "8",
day = "1",
doi = "10.1007/JHEP08(2018)176",
language = "English (US)",
volume = "2018",
journal = "Journal of High Energy Physics",
issn = "1126-6708",
publisher = "Springer Verlag",
number = "8",

}

TY - JOUR

T1 - Measurement of the CKM angle γ using B ± → DK ± with D → K S 0 π + π −, K S 0 K + K − decays

AU - The Lhcb Collaboration

AU - Aaij, R.

AU - Adeva, B.

AU - Adinolfi, M.

AU - Aidala, C. A.

AU - Ajaltouni, Z.

AU - Akar, S.

AU - Albicocco, P.

AU - Albrecht, J.

AU - Alessio, F.

AU - Alexander, M.

AU - Alfonso Albero, A.

AU - Ali, S.

AU - Alkhazov, G.

AU - Alvarez Cartelle, P.

AU - Alves, A. A.

AU - Amato, S.

AU - Amerio, S.

AU - Amhis, Y.

AU - An, L.

AU - Anderlini, L.

AU - Andreassi, G.

AU - Andreotti, M.

AU - Andrews, J. E.

AU - Appleby, R. B.

AU - Archilli, F.

AU - d’Argent, P.

AU - Arnau Romeu, J.

AU - Artamonov, A.

AU - Artuso, Marina

AU - Arzymatov, K.

AU - Aslanides, E.

AU - Atzeni, M.

AU - Bachmann, S.

AU - Back, J. J.

AU - Baker, S.

AU - Balagura, V.

AU - Baldini, W.

AU - Baranov, A.

AU - Barlow, R. J.

AU - Barsuk, S.

AU - Barter, W.

AU - Baryshnikov, F.

AU - Batozskaya, V.

AU - Batsukh, B.

AU - Battista, V.

AU - Bay, A.

AU - Blusk, Steven Roy

AU - Rudolph, Matthew

AU - Skwarnicki, Tomasz

AU - Stone, Sheldon

PY - 2018/8/1

Y1 - 2018/8/1

N2 - A binned Dalitz plot analysis of B± → DK± decays, with D → KS 0π+π− and D → KS 0K+K−, is used to perform a measurement of the CP-violating observables x± and y±, which are sensitive to the Cabibbo-Kobayashi-Maskawa angle γ. The analysis is performed without assuming any D decay model, through the use of information on the strong-phase variation over the Dalitz plot from the CLEO collaboration. Using a sample of proton-proton collision data collected with the LHCb experiment in 2015 and 2016, and corresponding to an integrated luminosity of 2.0 fb−1, the values of the CP violation parameters are found to be x− = (9.0 ± 1.7 ± 0.7 ± 0.4) × 10−2, y− = (2.1 ± 2.2 ± 0.5 ± 1.1) × 10−2, x+ = (−7.7 ± 1.9 ± 0.7 ± 0.4) × 10−2, and y+ = (−1.0 ± 1.9 ± 0.4 ± 0.9) × 10−2. The first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty (on the strong-phase measurements. These values are used to obtain γ = (87− 12 + 11)∘, rB = 0.086− 0.014 + 0.013, and δB = (101±11)°, where rB is the ratio between the suppressed and favoured B-decay amplitudes and δB is the corresponding strong-interaction phase difference. This measurement is combined with the result obtained using 2011 and 2012 data collected with the LHCb experiment, to give γ = (80− 9 + 10)∘, rB = 0.080 ± 0.011, and δB = (110 ± 10)°.[Figure not available: see fulltext.]

AB - A binned Dalitz plot analysis of B± → DK± decays, with D → KS 0π+π− and D → KS 0K+K−, is used to perform a measurement of the CP-violating observables x± and y±, which are sensitive to the Cabibbo-Kobayashi-Maskawa angle γ. The analysis is performed without assuming any D decay model, through the use of information on the strong-phase variation over the Dalitz plot from the CLEO collaboration. Using a sample of proton-proton collision data collected with the LHCb experiment in 2015 and 2016, and corresponding to an integrated luminosity of 2.0 fb−1, the values of the CP violation parameters are found to be x− = (9.0 ± 1.7 ± 0.7 ± 0.4) × 10−2, y− = (2.1 ± 2.2 ± 0.5 ± 1.1) × 10−2, x+ = (−7.7 ± 1.9 ± 0.7 ± 0.4) × 10−2, and y+ = (−1.0 ± 1.9 ± 0.4 ± 0.9) × 10−2. The first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty (on the strong-phase measurements. These values are used to obtain γ = (87− 12 + 11)∘, rB = 0.086− 0.014 + 0.013, and δB = (101±11)°, where rB is the ratio between the suppressed and favoured B-decay amplitudes and δB is the corresponding strong-interaction phase difference. This measurement is combined with the result obtained using 2011 and 2012 data collected with the LHCb experiment, to give γ = (80− 9 + 10)∘, rB = 0.080 ± 0.011, and δB = (110 ± 10)°.[Figure not available: see fulltext.]

KW - B physics

KW - CKM angle gamma

KW - CP violation

KW - Flavor physics

KW - Hadron-Hadron scattering (experiments)

UR - http://www.scopus.com/inward/record.url?scp=85052727921&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85052727921&partnerID=8YFLogxK

U2 - 10.1007/JHEP08(2018)176

DO - 10.1007/JHEP08(2018)176

M3 - Article

VL - 2018

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1126-6708

IS - 8

M1 - 176

ER -