TY - GEN
T1 - Mean absorbed dose to mouse in micro-CT imaging with an ultrafast laser-based x-ray source
AU - Krol, Andrzej
AU - Hongwei, Ye
AU - Kincaid, Russell
AU - Boone, John
AU - Servol, Marina
AU - Kieffer, Jean Claude
AU - Nesterets, Yakov
AU - Gureyev, Tim
AU - Stevenson, Andrew
AU - Wilkins, Steve
AU - Lipson, Edward
AU - Toth, Remy
AU - Pogany, Andrew
AU - Coman, Ioana
PY - 2007
Y1 - 2007
N2 - We have investigated theoretically the mean absorbed dose to the mouse in our newly constructed, in-line holography, x-ray phase-contrast, in-vivo, micro-CT system with an ultrafast laser-based x-ray (ULX) source. We assumed that the effective mouse diameter was 30 mm and the x-ray detector required minimum 30 μGy per frame to produce high quality images. The following laser target-filter combinations were considered: Ag-Ag, Mo-Mo, Sn-Sn. In addition, we considered narrow-pass multilayer x-ray mirrors. The corresponding ULX spectra were obtained using a CZT solid-state spectrometer. The approach used for dose computation was similar to human dose estimation. The mouse was modeled as a tissue-equivalent cylinder located at the isocenter with diameter 30 mm and density 1g/cm 3. A layer of dermis (skin and fur) with 1 mm thickness was also modeled. Imparted energy per volume was estimated for 1 keV wide x-ray energy intervals in the 6-100 keV range. Monte Carlo simulations were performed using the SIERRA code previously validated using 30 mm diameter PMMA phantom. The results obtained indicate that: a) the mean absorbed dose for ULX is less than or equal to that from a W-anode micro-CT tube operating at 30-40 kVp with 0.5 or 1.0 mm Al; b) for filter thickness above 100 μm, Sn-Sn results in the highest dose, followed by Ag-Ag and Mo-Mo; c) the multilayer x-ray mirror with FWHM ≤ 10 keV produces significantly lower dose than metallic foil filters. We conclude that ULX can provide better dose utilization than a microfocal x-ray tube for in vivo microtomography applications.
AB - We have investigated theoretically the mean absorbed dose to the mouse in our newly constructed, in-line holography, x-ray phase-contrast, in-vivo, micro-CT system with an ultrafast laser-based x-ray (ULX) source. We assumed that the effective mouse diameter was 30 mm and the x-ray detector required minimum 30 μGy per frame to produce high quality images. The following laser target-filter combinations were considered: Ag-Ag, Mo-Mo, Sn-Sn. In addition, we considered narrow-pass multilayer x-ray mirrors. The corresponding ULX spectra were obtained using a CZT solid-state spectrometer. The approach used for dose computation was similar to human dose estimation. The mouse was modeled as a tissue-equivalent cylinder located at the isocenter with diameter 30 mm and density 1g/cm 3. A layer of dermis (skin and fur) with 1 mm thickness was also modeled. Imparted energy per volume was estimated for 1 keV wide x-ray energy intervals in the 6-100 keV range. Monte Carlo simulations were performed using the SIERRA code previously validated using 30 mm diameter PMMA phantom. The results obtained indicate that: a) the mean absorbed dose for ULX is less than or equal to that from a W-anode micro-CT tube operating at 30-40 kVp with 0.5 or 1.0 mm Al; b) for filter thickness above 100 μm, Sn-Sn results in the highest dose, followed by Ag-Ag and Mo-Mo; c) the multilayer x-ray mirror with FWHM ≤ 10 keV produces significantly lower dose than metallic foil filters. We conclude that ULX can provide better dose utilization than a microfocal x-ray tube for in vivo microtomography applications.
KW - Micro-computed tomography
KW - Monte Carlo simulation
KW - Mouse imaging
KW - Small animal x-ray dose
KW - Ultrafast laser-based x-ray source
UR - http://www.scopus.com/inward/record.url?scp=35148855395&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=35148855395&partnerID=8YFLogxK
U2 - 10.1117/12.713827
DO - 10.1117/12.713827
M3 - Conference contribution
AN - SCOPUS:35148855395
SN - 081946628X
SN - 9780819466280
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2007
T2 - Medical Imaging 2007: Physics of Medical Imaging
Y2 - 18 February 2007 through 22 February 2007
ER -