TY - JOUR
T1 - Mappings of smallest mean distortion and free-Lagrangians
AU - Iwaniec, Tadeusz
AU - Onninen, Jani
N1 - Publisher Copyright:
© 2020 Scuola Normale Superiore. All rights reserved.
PY - 2020
Y1 - 2020
N2 - Let X,Y ⊂ Rn be bounded domains of the same topological type. We are concerned with mappings f : X → Y, predominately orientation preserving homeomorphisms, in the Sobolev space W 1,p(X,Rn). Thus at almost every x 2 X the linear differential map Df (x) : TxX ≃ Rn -→ TyY ≃ Rn , y = f (x), is represented by the Jacobian matrix Df (x) 2 Rn×n + . Hereafter Rn×n + denotes the space of n × n-matrices with positive determinant.
AB - Let X,Y ⊂ Rn be bounded domains of the same topological type. We are concerned with mappings f : X → Y, predominately orientation preserving homeomorphisms, in the Sobolev space W 1,p(X,Rn). Thus at almost every x 2 X the linear differential map Df (x) : TxX ≃ Rn -→ TyY ≃ Rn , y = f (x), is represented by the Jacobian matrix Df (x) 2 Rn×n + . Hereafter Rn×n + denotes the space of n × n-matrices with positive determinant.
UR - http://www.scopus.com/inward/record.url?scp=85099299956&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85099299956&partnerID=8YFLogxK
U2 - 10.2422/2036-2145.201708_009
DO - 10.2422/2036-2145.201708_009
M3 - Article
AN - SCOPUS:85099299956
SN - 0391-173X
VL - 20
SP - 1
EP - 106
JO - Annali della Scuola normale superiore di Pisa - Classe di scienze
JF - Annali della Scuola normale superiore di Pisa - Classe di scienze
IS - 1
ER -