Magnetically driven active topography for long-term biofilm control

Huan Gu, Sang Won Lee, Joseph Carnicelli, Teng Zhang, Dacheng Ren

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Microbial biofilm formation on indwelling medical devices causes persistent infections that cannot be cured with conventional antibiotics. To address this unmet challenge, we engineer tunable active surface topographies with micron-sized pillars that can beat at a programmable frequency and force level in an electromagnetic field. Compared to the flat and static controls, active topographies with the optimized design prevent biofilm formation and remove established biofilms of uropathogenic Escherichia coli (UPEC), Pseudomonas aeruginosa, and Staphylococcus aureus, with up to 3.7 logs of biomass reduction. In addition, the detached biofilm cells are found sensitized to bactericidal antibiotics to the level comparable to exponential-phase planktonic cells. Based on these findings, a prototype catheter is engineered and found to remain clean for at least 30 days under the flow of artificial urine medium, while the control catheters are blocked by UPEC biofilms within 5 days.

Original languageEnglish (US)
Article number2211
JournalNature Communications
Volume11
Issue number1
DOIs
StatePublished - Dec 1 2020

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Magnetically driven active topography for long-term biofilm control'. Together they form a unique fingerprint.

Cite this