Lipschitz retraction of finite subsets of Hilbert spaces

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Finite subset spaces of a metric space X form a nested sequence under natural isometric embeddings X = X(1) ⊂ X(2) ⊂ · · ·. We prove that this sequence admits Lipschitz retractions X(n) → X(n-1) when X is a Hilbert space.

Original languageEnglish (US)
Pages (from-to)146-151
Number of pages6
JournalBulletin of the Australian Mathematical Society
Issue number1
StatePublished - Feb 1 2016


  • Finite subset space
  • Hausdorff metric
  • Lipschitz retraction
  • metric space

ASJC Scopus subject areas

  • General Mathematics


Dive into the research topics of 'Lipschitz retraction of finite subsets of Hilbert spaces'. Together they form a unique fingerprint.

Cite this