Leveraging load migration and basestaion consolidation for green communications in virtualized Cognitive Radio Networks

Xiang Sheng, Jian Tang, Chenfei Gao, Weiyi Zhang, Chonggang Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations


With wireless resource virtualization, multiple Mobile Virtual Network Operators (MVNOs) can be supported over a shared physical wireless network and traffic loads in a Base Station (BS) can be easily migrated to more power-efficient BSs in its neighborhood such that idle BSs can be turned off or put into sleep to save power. In this paper, we propose to leverage load migration and BS consolidation for green communications and consider a power-efficient network planning problem in virtualized Cognitive Radio Networks (CRNs) with the objective of minimizing total power consumption while meeting traffic load demand of each MVNO. First, we present a Mixed Integer Linear Programming (MILP) to provide optimal solutions. Then we present a general optimization framework to guide algorithm design, which solves two subproblems, channel assignment and load allocation, in sequence. For channel assignment, we present a (1/Δ)-approximation algorithm (where Δ is the maximum number of BSs a BS can potentially interfere with). For load allocation, we present a polynomial-time optimal algorithm for a special case where BSs are power-proportional as well as two effective heuristic algorithms for the general case. In addition, we present an effective heuristic algorithm that jointly solves the two subproblems. It has been shown by extensive simulation results that the proposed algorithms produce close-to-optimal solutions, and moreover, achieve over 45% power savings compared to a baseline algorithm that does not migrate loads or consolidate BSs.

Original languageEnglish (US)
Title of host publicationProceedings - IEEE INFOCOM
Number of pages9
StatePublished - 2013
Event32nd IEEE Conference on Computer Communications, IEEE INFOCOM 2013 - Turin, Italy
Duration: Apr 14 2013Apr 19 2013


Other32nd IEEE Conference on Computer Communications, IEEE INFOCOM 2013



  • basestation consolidation
  • cognitive radio
  • Green wireless communications
  • load migration
  • virtualization

ASJC Scopus subject areas

  • Computer Science(all)
  • Electrical and Electronic Engineering

Cite this