Learning-Based UAV Trajectory Optimization with Collision Avoidance and Connectivity Constraints

Xueyuan Wang, M. Cenk Gursoy

Research output: Chapter in Book/Entry/PoemConference contribution

7 Scopus citations

Abstract

Unmanned aerial vehicles (UAVs) are expected to be an integral part of wireless networks, and determining collision-free trajectories for multiple UAVs while satisfying requirements of connectivity with ground base stations (GBSs) is a challenging task. In this paper, we first reformulate the multi-UAV trajectory optimization problem with collision avoidance and wireless connectivity constraints as a sequential decision making problem in the discrete time domain. We, then, propose a decentralized deep reinforcement learning approach to solve the problem. More specifically, a value network is developed to encode the expected time to destination given the agent's joint state (including the agent's information, the nearby agents' observable information, and the locations of the nearby GBSs). An SINR-prediction network is also designed, using accumulated SINR measurements obtained when interacting with the cellular network, to map the GBSs' locations into the SINR levels in order to predict the UAV's SINR. Numerical results show that with the value network and SINR-prediction network, real-time navigation for multi-UAVs can be efficiently performed in various environments with high success rate.

Original languageEnglish (US)
Title of host publicationICC 2021 - IEEE International Conference on Communications, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728171227
DOIs
StatePublished - Jun 2021
Event2021 IEEE International Conference on Communications, ICC 2021 - Virtual, Online, Canada
Duration: Jun 14 2021Jun 23 2021

Publication series

NameIEEE International Conference on Communications
ISSN (Print)1550-3607

Conference

Conference2021 IEEE International Conference on Communications, ICC 2021
Country/TerritoryCanada
CityVirtual, Online
Period6/14/216/23/21

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Learning-Based UAV Trajectory Optimization with Collision Avoidance and Connectivity Constraints'. Together they form a unique fingerprint.

Cite this