TY - JOUR
T1 - Lats1 deletion causes increased germ cell apoptosis and follicular cysts in mouse ovaries
AU - Sun, Tianyanxin
AU - Pepling, Melissa E.
AU - Diaz, Francisco J.
N1 - Publisher Copyright:
© 2015 by the Society for the Study of Reproduction, Inc.
PY - 2015/7/1
Y1 - 2015/7/1
N2 - The Hippo signaling pathway is essential for regulating proliferation and apoptosis in mammalian cells. The LATS1 kinase is a core member of the Hippo signaling pathway that phosphorylates and inactivates the transcriptional co-activators YAP1 and WWTR1. Deletion of Lats1 results in low neonate survival and ovarian stromal tumors in surviving adults, but the effects of Lats1 on early follicular development are not understood. Here, the expression of Hippo pathway components including Wwtr1, Stk4, Stk3, Lats2, and Yap1 transcripts were decreased by 50% in mouse ovaries between 2 and 8 days of age while expression was maintained from 8 days to 21 days and after priming with eCG. LATS1, LATS2, and MOB1B were localized to both germ and somatic cells of primordial to antral follicles. Interestingly, YAP1 was predominantly cytoplasmic, whereas WWTR1 was nuclear in oocytes and somatic cells. Deletion of Lats1 caused an increase in germ cell apoptosis from 1.7% in control ovaries to 3.6% in Lats1 mutant ovaries and a 58% and 32% decrease in primordial and activated follicle numbers in cultured mutant ovaries. Surprisingly, there was an increase in Bmp15 but not Gdf9, Figla, Nobox transcripts or the somatic-specific transcripts Amh and Wnt4 in cultured Lats1 mutant ovaries. Last, Lats1 mutant ovaries developed ovarian cysts at a higher frequency (43%) than heterozygous (24%) and control ovaries (8%). Results showed that the Hippo pathway is active in ovarian follicles and that LATS1 is required to maintain the pool of germ cells and primordial follicles.
AB - The Hippo signaling pathway is essential for regulating proliferation and apoptosis in mammalian cells. The LATS1 kinase is a core member of the Hippo signaling pathway that phosphorylates and inactivates the transcriptional co-activators YAP1 and WWTR1. Deletion of Lats1 results in low neonate survival and ovarian stromal tumors in surviving adults, but the effects of Lats1 on early follicular development are not understood. Here, the expression of Hippo pathway components including Wwtr1, Stk4, Stk3, Lats2, and Yap1 transcripts were decreased by 50% in mouse ovaries between 2 and 8 days of age while expression was maintained from 8 days to 21 days and after priming with eCG. LATS1, LATS2, and MOB1B were localized to both germ and somatic cells of primordial to antral follicles. Interestingly, YAP1 was predominantly cytoplasmic, whereas WWTR1 was nuclear in oocytes and somatic cells. Deletion of Lats1 caused an increase in germ cell apoptosis from 1.7% in control ovaries to 3.6% in Lats1 mutant ovaries and a 58% and 32% decrease in primordial and activated follicle numbers in cultured mutant ovaries. Surprisingly, there was an increase in Bmp15 but not Gdf9, Figla, Nobox transcripts or the somatic-specific transcripts Amh and Wnt4 in cultured Lats1 mutant ovaries. Last, Lats1 mutant ovaries developed ovarian cysts at a higher frequency (43%) than heterozygous (24%) and control ovaries (8%). Results showed that the Hippo pathway is active in ovarian follicles and that LATS1 is required to maintain the pool of germ cells and primordial follicles.
KW - Hippo
KW - LATS1
KW - Ovary
UR - http://www.scopus.com/inward/record.url?scp=84938938444&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84938938444&partnerID=8YFLogxK
U2 - 10.1095/biolreprod.114.118604
DO - 10.1095/biolreprod.114.118604
M3 - Article
C2 - 26040669
AN - SCOPUS:84938938444
SN - 0006-3363
VL - 93
JO - Biology of Reproduction
JF - Biology of Reproduction
IS - 1
M1 - 22
ER -