TY - JOUR
T1 - Jamming graphs
T2 - A local approach to global mechanical rigidity
AU - Lopez, Jorge H.
AU - Cao, L.
AU - Schwarz, J. M.
PY - 2013/12/16
Y1 - 2013/12/16
N2 - We revisit the concept of minimal rigidity as applied to frictionless, repulsive soft sphere packings in two dimensions with the introduction of the jamming graph. Minimal rigidity is a purely combinatorial property encoded via Laman's theorem in two dimensions. It constrains the global, average coordination number of the graph, for example. However, minimal rigidity does not address the geometry of local mechanical stability. The jamming graph contains both properties of global mechanical stability at the onset of jamming and local mechanical stability. We demonstrate how jamming graphs can be constructed using local moves via the Henneberg construction such that these graphs fall under the jurisdiction of correlated percolation. We then probe how jamming graphs destabilize, or become unjammed, by deleting a bond and computing the resulting rigid cluster distribution. We also study how the system restabilizes with the addition of new contacts and how a jamming graph with extra (redundant) contacts destabilizes. The latter endeavor allows us to probe a disk packing in the rigid phase and uncover a potentially new diverging length scale associated with the random deletion of contacts as compared to the study of cut-out (or frozen-in) subsystems.
AB - We revisit the concept of minimal rigidity as applied to frictionless, repulsive soft sphere packings in two dimensions with the introduction of the jamming graph. Minimal rigidity is a purely combinatorial property encoded via Laman's theorem in two dimensions. It constrains the global, average coordination number of the graph, for example. However, minimal rigidity does not address the geometry of local mechanical stability. The jamming graph contains both properties of global mechanical stability at the onset of jamming and local mechanical stability. We demonstrate how jamming graphs can be constructed using local moves via the Henneberg construction such that these graphs fall under the jurisdiction of correlated percolation. We then probe how jamming graphs destabilize, or become unjammed, by deleting a bond and computing the resulting rigid cluster distribution. We also study how the system restabilizes with the addition of new contacts and how a jamming graph with extra (redundant) contacts destabilizes. The latter endeavor allows us to probe a disk packing in the rigid phase and uncover a potentially new diverging length scale associated with the random deletion of contacts as compared to the study of cut-out (or frozen-in) subsystems.
UR - http://www.scopus.com/inward/record.url?scp=84891691500&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84891691500&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.88.062130
DO - 10.1103/PhysRevE.88.062130
M3 - Article
AN - SCOPUS:84891691500
SN - 1063-651X
VL - 88
JO - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
JF - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
IS - 6
M1 - 062130
ER -