TY - JOUR
T1 - Jacobian of weak limits of Sobolev homeomorphisms
AU - Hencl, Stanislav
AU - Onninen, Jani
N1 - Publisher Copyright:
© 2017 Walter de Gruyter GmbH.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Let Ω be a domain in ℝn, where n = 2, 3. Suppose that a sequence of Sobolev homeomorphisms fk : Ω → ℝn with positive Jacobian determinants, J(x, fk) > 0, converges weakly in W1,p(Ω, ℝn), for some p ≥ 1, to a mapping f. We show that J(x, f) ≥ 0 a.e. in Ω. Generalizations to higher dimensions are also given.
AB - Let Ω be a domain in ℝn, where n = 2, 3. Suppose that a sequence of Sobolev homeomorphisms fk : Ω → ℝn with positive Jacobian determinants, J(x, fk) > 0, converges weakly in W1,p(Ω, ℝn), for some p ≥ 1, to a mapping f. We show that J(x, f) ≥ 0 a.e. in Ω. Generalizations to higher dimensions are also given.
KW - Jacobian
KW - Sobolev homeomorphism
KW - weak limits
UR - http://www.scopus.com/inward/record.url?scp=85040164809&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85040164809&partnerID=8YFLogxK
U2 - 10.1515/acv-2016-0005
DO - 10.1515/acv-2016-0005
M3 - Article
AN - SCOPUS:85040164809
SN - 1864-8258
VL - 11
SP - 65
EP - 73
JO - Advances in Calculus of Variations
JF - Advances in Calculus of Variations
IS - 1
ER -